DOI: 10. 16423/j. cnki. 1003-8701. 2002. s1. 009

文章编号:1003-8701(2002)S1-0020-02

长春市郊区保护地美洲斑潜蝇 发生动态及综合防治

潘洪玉,董维民,杨万里,祝旭生

(解放军军需大学植物保护教研室, 吉林 长春 130062)

摘 要:采用黄板诱集法,对长春市郊保护地蔬菜中的美洲斑潜蝇发生动态进行监测。结果表明,美洲斑潜蝇属于集聚分布,在长春市郊每年可发生 10 多代,春、秋两季为发生高峰,世代重叠,嗜食瓜类、茄科和豆科蔬菜,冬季日光温室是主要虫源。建立以农业防治为基础,大力推广应用黄板诱杀和防虫网阻隔技术,保护和利用寄生蜂的自然种群,辅之无公害的选择性杀虫剂综合防治体系,才能将美洲斑潜蝇控制在经济危害水平之下,确保生产绿色食品蔬菜。

关键词:美洲斑潜蝇;发生动态;综合防治

中图分类号:S436

文献标识码:A

美洲斑潜蝇(Liriomzed sativae Blanchard)是一种国内外危险性检疫对象。近几年来,全国除西藏以外,各地相继进行了美洲斑潜蝇发生的报道,但在我国的北方长春市发生动态却不详。为此,笔者对长春市郊保护地蔬菜通过黄板诱杀和田间取样进行监测,掌握美洲斑潜蝇在本地的活动规律和发生情况,并制定相应的防治措施。

1 材料与方法

1.1 美洲斑潜蝇发生动态的检测

监测点设在军需大学农业试验站蔬菜无栽培立体温室。寄主为茄科的番茄、茄子、辣椒和菊科的菊苣、十字花科的生菜。采用北京产林茂牌黄色粘虫板(20 cm $^{ imes30}$ cm)进行诱集,间隔 3 m 设置黄板,悬挂高度略高于植株。从 3 月 14 日开始观察,每 3 d 计数一次。数据处理软件是中国水稻研究所的 DPS 系统。

1.2 生活史观查及虫种鉴定

从温室采集被害叶片和收集落在叶下部的蛹带回室内,利用罐头瓶在光温培养箱、养虫笼中饲养。瓶口罩上尼龙纱网,温度 $20\sim23$ °C,RH $80\%\sim85\%$,24 h 观察一次,记录美洲斑潜蝇的各个发育时期,待成虫及天敌羽化后在显微镜下鉴定虫种。

1.3 田间药剂防治试验

在卵孵化高峰期前,采用 6 种药剂防治:1.8% 爱维菌素 2 000 倍液(中原制药集团)、10% 兴棉宝1 200 倍液(英国卜内门化学工业有限公司)、20%速灭杀丁 1 500 倍液(日本住友化学工业株式会社)、40% 绿菜保 1 000 倍液(北京华戎激素厂)、18% 杀虫单 800 倍液(江苏溧阳市化工厂生产)和 3.5% 苦皮素 1 000 倍液(河南省东风化工厂生产)。试验采用单因素随机区组法,重复 3 次,小区面积 $10~\text{m}^2$,常量喷雾,细密均匀喷施,用水做空白试验,7~d 后调查防治效果。

2 结果与分析

2.1 美洲斑潜蝇的发生动态

经田间定点观察、黄斑诱集和室内人工饲养,美洲斑潜蝇在长春市郊区以两性生殖方式繁衍后代,经历卵、幼虫、蛹和成虫4个发育阶段。卵历期为2~4d,孵化后的幼虫即潜入叶片和叶柄中取食危害。幼

注:董维民、杨万里和祝旭生为2002农艺本科学生。

虫历期 $3\sim8$ d, 老熟幼虫爬出虫道于叶面上或落入地面化蛹, 在 25 ^ℂ 蛹历期为 $9\sim10$ d, 完成一个世代只需 $13\sim20$ d。基于温室的气温和积温数推算, 该虫在本地一年可发生 10 代以上, 并存在明显的世代重叠。

据王音等报道,美洲斑潜蝇蛹的过冷却点为一9.96℃,结冰点为一9.06℃。所以美洲斑潜蝇在长春地区露地不可能越冬,而且保护地在冬季必须有加温措施才有可能存活。因此,可以认为发生的美洲斑潜蝇主要虫源就是冬季日光温室及外地传入。由于美洲斑潜蝇飞行能力有限,自身扩散能力弱,靠卵和幼虫随寄主(植株、切条、切花、叶菜及各种瓜果的铺垫、填充和包装物等)或蛹随盆栽植株、土壤、交通工具等是远距离非常重要的传播方式。因此,控制冬季日光温室中的虫源,切断日光温室、大棚与露地栽培害虫的传播途径是防治美洲斑潜蝇的关键。

2.2 美洲斑潜蝇的空间分布

经食性测定、温室观察与数据统计分析表明,美洲斑潜蝇食性广,但具有一定的选择性,嗜食顺序为:葫芦科〉茄科〉豆科〉菊科〉十字花科。其空间分布为集聚分布。在一天中成虫在上午和傍晚比较活跃,用黄板可诱集到一天虫量的70%以上。较低的气温更适合其活动,28%以上高温有明显的抑制性。

温室蔬菜进入 4 月份后,气温回升,利于美洲斑潜蝇繁殖,虫口密度增长较快,于上旬出现第一个蜂值,之后由于温室温度达到 30° 以上,其生长受到抑制,虫口密度有所下降。此时各种蔬菜进入生长旺期,食源丰富,虫口密度再次上升,于 5 月 5 日达到第二次高峰,平均每一黄板诱虫 220.6 头。大约每月完成一代, 9° 10 月份危害严重。

3 美洲斑潜蝇的综合防治

3.1 农业防治

调整作物种植结构。根据美洲斑潜蝇对作物有嗜好性的特点,将其嗜好蔬菜与受害轻的蔬菜或非寄主蔬菜套作或边片种植。研究发现种植牛皮菜(叶用甜菜)能有效地诱杀美洲斑潜蝇。另外,结合田间管理,及时清除虫叶,能减少虫源。整地深翻,在美洲斑潜蝇盛发期锄地松土或锄后浇水,对虫蛹也有一定的杀灭作用。

3.2 物理防治

阻隔防虫:早春要严格控制日光温室的美洲斑潜蝇,并在日光温室、大棚的各通风口铺设 60 目的防虫网,能非常有效地切断美洲斑潜蝇的转移和蔓延。

黄板诱杀:利用塑料黄板诱杀成虫是一种简便易行、经济有效、无污染的防治方法。黄板的颜色宜用中黄,淡黄、土黄次之。除去黄板上的虫体和杂质,重新涂上机油或者粘虫胶即可重复使用。黄板诱杀在长春市郊区日光温室应用效果很明显。

3.3 生物防治

在长春市郊美洲斑潜蝇幼虫寄生天敌主要有: 姬小蜂(Diglyphus intermedius 和 D· isæa)、反鄂茧蜂(Dacnuda sibirica)、潜蝇蜂(Opius pallipes,O· axabribentris,O· sp·),自然寄生率可达 $16\% \sim 28\%$,对其种群具有一定的控制作用,应合理地保护和利用。生物防治不污染环境,是生产绿色食品蔬菜的主要防治手段,应大力加强。

3.4 化学防治

据研究,当被害株率达到 $10\%\sim15\%$ 时,在卵的孵化高峰期前施药,能够达到较好的防治效果。通过对比试验,1.8% 爱维菌素、40%绿菜保、3.5% 苦皮素防效较好,分别达到了 95.8%、92.5%和 86.0%,生产上可以选用。美洲斑潜蝇繁育力强,世代重叠,幼虫孵化后潜入叶片表皮内取食叶肉,化学防治难度较大。同时,必须考虑保护天敌和无公害。

总之,必须掌握其发生规律,坚持以农业防治为基础,大力推广应用物理防治和生物防治,科学地选用 杀虫剂,辅之化学防治,才能将美洲斑潜蝇控制在经济危害水平之下,确保蔬菜绿色无污染。

(下转第29页)

	苗期(出苗到现蕾)				成株期(现蕾到开花后)			
(g)	1991	1992	1993	3年平均	1991	1992	1993	3年平均
1.5	25.7	39.9	12.8	26.13	15.3	56.6	14.4	28.76
2.0	13.2	44.1	16.3	24.53	6.4	54.4	16.8	25.87
2.5	15.3	57.0	14.9	29.07	8.7	65.2	16.0	29.97
3.0	25.4	45.1	22.0	30.83	19.3	55.9	25.6	33.60
3.5		54.8	15.7	35.25		65.7	17.2	41.45
对照	0.9	3.8	1.9	2.19	5.4	5.7	3.1	4.72

表 3 田间人工接菌鉴定蓖麻枯萎病发病情况

通过对白城市农科院育种研究所提供的 23 份蓖麻品种资源进行鉴定,发病较轻的材料有 9308、254、252、97 和汾 83-12,苗期病情指数分别为 7.5、2.5、4.78、11.12 和 4.07;成株期病情指数分别为 10.7、25.0、37.6、27.13 和 30.0;而最重的 119 品种苗期病情指数为 36.76,成株期病情指数为 87.89(表 4)。

品种 名称	苗期病 情指数	成株病 情指数	品种 名称	苗期病 情指数	成株病 情指数	品种 名称	苗期病 情指数	成株病 情指数				
92	16.03	48.60	204	56.01	66.10	272	15.20	36.74				
102	30.74	59.23	211	32.23	56.76	276	21.18	42.31				
106	11.74	35.22	250	26.70	78.08	279	14.34	43.95				
107	15.94	39.97	252	4.78	37.60	293	8.42	31.30				
119	36.76	87.89	254	2.50	25.00	312	32.56	49.54				
125	11.50	56.00	270	26.95	55.05	汾 83-12	4.07	30.00				
168	15.73	54.88	271	21.91	47.86	97	11.12	27.13				
9308	7.50	10.70	哲篦1号	13.53	26.97							

表 4 品种资源抗枯萎病鉴定结果

3 结 论

通过对蓖麻枯萎病不同接种方法的研究结果表明,以菌土法接种,发病较重,效果较好,可以用于蓖麻枯萎病的抗性鉴定。通过对不同蓖麻品种资源的抗性鉴定表明,不同品种发病程度有明显差异,并且苗期病情指数和成株期病情指数具有一定的相关性,苗期发病重的,成株期发病亦重,可以在苗期对蓖麻枯萎病进行早期鉴定,可节省人力物力,加速蓖麻枯萎病的抗病洗育进程。

(上接第21页)

参考文献:

- [1] 谢琼华,何谭连,等.美洲斑潜蝇发生危害及其防治[J]. 植物保护,1997,23(1):20-22.
- [2] 康 乐.斑潜蝇的牛态学与持续控制[M].北京:科学出版社,1996.43-54.
- [3] 王 音,雷仲仁,问锦曾,等.京郊蔬菜上潜叶蝇种群动态调查[J].植物保护,1998,24(4):10-14.
- [4] 张友军, 朱国仁, 等. 美洲斑潜蝇幼虫对杀虫剂的敏感性研究[J]. 植物保护, 1999, 25(4):10-11.
- [5] 问锦曾,雷仲仁,王 音·我国蔬菜潜叶蝇寄生蜂简介(一)、(二)、(三)、(四)[J]·植物保护, 1999, 25(3), 39-40; 1999, 25(4), 43-44; 1999, 25(5), 38-40; 2000, 26(2), 40-42.
- [6] 王 音, 雷仲仁, 问锦曾, 等·美洲斑潜蝇的越冬与耐寒性研究[J]. 植物保护学报, 2000, 27(1): 32-35.
- [7] 刘宏海,万树青.美洲斑潜蝇持续控制技术探讨[J].广东农业科学,1998,(6):33-34.
- [8] 谭伟雄, 卓国豪. 美洲斑潜蝇的发生规律与防治方法[J]. 中国蔬菜, 1997, (1):27-28.
- [9] 宫亚军,石宝才,不同黄色对美洲斑潜蝇成虫诱杀效果研究[J],北京农业科学,1998,16(3),28-29.
- [10] Nateick ET-Protection from phytophagous insects and virus vectors in honeydew melons using row covers-Florida Entomologist 1993, 76(1); 120—126.
- [11] 1ssa S, et al. Population dynamics of *Liriomyza sativae* and its parasites on tomato Turrialba, 1994, 44(1): 24-30.