文章编号:1003-8701(2005)05-0060-03

玉米黄粉的深加工及应用前景

金英姿¹,王大为²,张艳荣²

(1.新疆轻工职业技术学院,乌鲁木齐 830021;2.吉林农业大学食品科技学院,长春 130118)

摘 要:阐述了玉米蛋白的化学成分、营养价值及其独特的氨基酸组成,利用这些特点可开发玉米醇溶蛋白、玉米黄色素、谷氨酸和天然蛋白水解肽等深加工产品。这些产品附加值高、成本低、无毒副作用,具有广阔的市场前景。

关键词:玉米黄粉;营养价值;生理功能;活性肽

中图分类号:S513.099

文献标识码:A

玉米是世界上三大粮食作物之一,我国玉米年产量已达 1.1 亿 t,玉米湿法淀粉生产厂达 300 多家,每年消费玉米约 400 万 t,拥有玉米蛋白粉(俗称黄粉)资源 21 万 t,目前主要用做饲料或自然排放,未得到合理的利用。利用玉米黄粉可提取天然食用色素、玉米醇溶蛋白和谷氨酸等,还能制备具有多种生理功能的玉米活性肽,如谷氨酰胺肽、高 F 值低聚肽、降血压肽和玉米蛋白肽等,从而大幅度提升玉米的附加值。

1 玉米黄粉的成分

玉米黄粉是玉米经湿磨法工艺制得粗淀粉乳,再经蛋白质分离得到麸质水,然后浓缩干燥而制得。它是玉米湿法加工淀粉时的主要副产物,大约含蛋白质 60%以上,有的达 70%,其化学组成见表 1。玉米黄粉中除含有丰富的蛋白类营养物质外,尚含有其它无机盐及多种维生素。

# 4	玉米黄粉化学成分含量
ব⊽ ৷	卡不电机化子放力召車

%

蛋白质	淀粉	脂肪	水分	纤维	灰分	类胡萝卜素(mg/kg)
65	15	7	10	2	1	100 ~ 300

2 玉米蛋白的营养价值

玉米黄粉含有的蛋白质主要为醇溶蛋白(zein,68%)和谷蛋白(glutelin,22%),另有极少量的球蛋白 (globulins)和白蛋白(albumin)。玉米蛋白水解后的 Ile、Leu、Val 和 Ala 等疏水性氨基酸和 Pro、Gln 等含量很高,很少含 Lys、Trp 必需氨基酸,玉米蛋白粉的氨基酸组成见表 2。这种独特的氨基酸营养价值不高,但通过生物工程,控制一定水解度可获得具有多种生理功能的活性肽。

表 2 玉米蛋白粉的氨基酸组成

名 称	代 号	含量(%)	名 称	代 号	含量(%)	名 称	代 号	含量(%)
赖氨酸	Lys	0.96	甘氨酸	Gly	1.36	亮氨酸	Leu	8.24
组氨酸	His	0.87	色氨酸	Trp	0.20	苏氨酸	Thr	1.52
精氨酸	Arg	1.56	谷氨酸	Glu(Gln)	12.26	酪氨酸	Tyr	2.31
天门冬氨酸	Asp	3.21	丙氨酸	Ala	4.81	苯丙氨酸	Phe	3.09
缬氨酸	Val	3.00	蛋氨酸	Met	1.05	胱氨酸	Gyss	0.56
脯氨酸	Pro	3.00	异亮氨酸	Ile	2.05	丝氨酸	Ser	2.51

收稿日期:2005-03-14

作者简介:金英姿(1967-)、女,浙江省天台人,新疆轻工职业技术学院讲师,在读硕士,研究方向为功能性食品。

3 玉米黄粉的应用

3.1 制取玉米黄色素

玉米黄色素属异戊二烯类,主要由玉米黄、隐黄素及叶黄素组成,属于类胡萝卜素。玉米黄色素在 人体内可转化为维生素 A,具有保护视力、促进人体生长、骨骼发育和提高机体免疫力的作用。玉米黄 色素可用于人造黄油、冰淇淋和糕点等食品,可取代合成色素。

玉米黄色素的提取工艺:黄粉→萃取→分离→浸提液→浓缩→液体玉米黄色素→喷雾干燥→粉末状玉米黄色素

3.2 制取玉米醇溶蛋白

玉米醇溶蛋白的特点是不溶于水,但溶于浓度 60%~95%的醇类水溶液,它具有良好的皮膜成形性、凝胶化性、抗氧化性、粘接性和缓慢释放性(药物、香味料)等性能,在食品工业中醇溶蛋白可以作为天然营养保鲜剂,即以喷雾的形式在食品表面形成涂层,可防潮和防氧化,从而延长食品货架期。制取玉米醇溶蛋白的方法有两种:

- ①乙醇法提取工艺:原料→过筛(80~100 目)→称量→浸泡萃取(90%乙醇)→离心分离→沉淀→60%乙醇萃取→离心分离→提取液→调等电点→静置→离心分离→湿产品→干燥→成品
- ②异丙醇法提取工艺:原料→过筛(80~100 目)→称量→浸泡萃取(70%异丙醇)→离心分离→提取液→调等电点→静置→离心分离→湿产品→真空干燥→成品

3.3 提取谷氨酸

由于玉米蛋白的氨基酸中谷氨酸含量较高,所以,玉米蛋白可以是谷氨酸的原料或是生产酱油的原料,也可用来生产味精。而且在医药上有很重要的用途,当体内葡萄糖供应不足时,它可提供给脑组织能量,改进和维持脑机能,而且对于神经衰弱、易疲劳、记忆力衰退和肝昏迷等有一定疗效。

谷氨酸的提取工艺:玉米蛋白粉→酸解→离子交换树脂脱色→洗脱液→精制→谷氨酸产品

3.4 制备玉米蛋白活性肽

玉米蛋白活性肽是一类具有特殊生理功能的小肽,它是玉米黄粉通过精制后的水解产物,与蛋白质、氨基酸相比,更易消化吸收。利用玉米蛋白活性肽可配制各种饮料、浓缩液或添加于食品及医药产品中,制成功能性食品或肽类药品。

3.4.1 制备谷氨酰胺(Gln)肽

玉米蛋白的氨基酸组成显示其谷氨酰胺含量很高,谷氨酰胺无论在健康和疾病状态下,对维持胃肠代谢作用的正常进行十分重要。富含谷氨酰胺的肽对胃肠代谢有良好作用,还可提高肠的稳定性。谷氨酰胺在提高机体免疫功能、改善酸碱失调及提高机体对应激的适应性等方面也有着重要的应用。

制备谷氨酰胺肽的工艺: 黄粉→预处理→复合蛋白酶水解→胃蛋白酶水解→离心→上清液→超滤→脱色→反渗透浓缩→Gln 活性肽

3.4.2 制备高 F 值低聚肽

高 F 值低聚肽是一种高支低芳的寡肽, F 值是支链氨基酸 (BCAA: Val、Leu、Ile) 与芳香族氨基酸 (AAA: Tyr、Phe)的摩尔之比称 Fischer Ratio, 简称 F 值。据调查, 健康成人血液中支链氨基酸和芳香族 氨基酸的摩尔比值为 3~4, 在肝硬化, 尤其当伴随肝性昏迷时, 口服或注射高 F 值制品可以调节病态 血相, 缓解肝昏迷。高 F 值低聚肽在肠道易消化和吸收, 可作为肠道营养剂, 补充能量。目前, 市场上大多数的高支低芳制品是用结晶氨基酸配制而成的, 价格昂贵。而利用价廉的黄粉制备高 F 值寡肽则价格适中, 将有广阔的市场。

黄粉制备高 F 值寡肽的工艺: 黄粉 \rightarrow 预处理 \rightarrow 酶解 \rightarrow 去除 AAA \rightarrow 浓缩纯化 \rightarrow 干燥 \rightarrow 成品 3.4.3 制备降血压肽

高血压是一种以动脉收缩或舒张压升高为特征的临床综合症,常引发心、脑、肾、眼和血管等各种并发症,严重威胁着人类健康。降血压肽通过抑制人体中血管紧张素转换酶(Angiotensin I-converting

enzyme, 简写为 ACE)的活性而达到降血压的作用。

目前的 ACE 抑制剂类抗高血压药物易损害肾功能,有一定副作用,若能开发天然植物蛋白的降血压肽,对不断增加的高血压患者无疑极具吸引力。

3.4.4 玉米蛋白肽

玉米蛋白肽作为一种植物蛋白肽易被人体吸收,适合肠胃不适者。利用玉米蛋白肽为原料制成的饮料,可作为蛋白质强化的营养补给剂、运动训练饮料以及早餐饮料等高蛋白饮料。

玉米蛋白肽的制备工艺:玉米蛋白粉→预处理→蛋白酶水解→灭酶→离心分离→脱苦脱臭→酶解液→调味→罐装→杀菌→产品

4 结 语

利用玉米蛋白开发精深加工产品,具有成本低、来源丰富和价格低廉的特点,其中功能性食品或肽类药物是纯天然的、无毒副作用,迎合了当今消费者心理。我国人口众多,相对需要量也多。可以预见,开发高附加值的玉米黄粉深加工产品的市场是可观的,它必将为企业带来巨大经济效益,前景十分广阔。

参考文献:

- [1] 尤 新. 玉米的综合利用及深加工[M]. 北京:中国轻工出版社,1999,81-87.
- [2] 李远志,等.从玉米黄浆中回收食用蛋白质[J].粮食与饲料工业,1992,(4):28-30.
- [3] 张锋斌,等.玉米蛋白粉的营养成分及应用[J]. 畜牧兽医杂志,1998,(10):26-28.
- [4] 藤 葳,等. 玉米黄粉的综合利用研究[J]. 氨基酸和生物资源,1995,(1):33-34.
- [5] 翟瑞文,等.用玉米渣生产玉米蛋白肽饮料[J].食品科学,1997,(9):31-33.
- [6] 何东平,等. 玉米醇溶蛋白生产技术[J]. 食品工业,1999,(1):16-17.
- [7] 江 山,等. 玉米粮食加工与综合利用[M]. 北京:化学工业出版社,1999,87-89.
- [8] Shin-ya Tanimoto et al. Enzymatic Modification of Zein to Produce a Non-bitter Peptide Fraction with a Fraction with a Very High Fischer Ratio For Patients with Hepatic Encephalopathy[J]. Agric. Boil. Chem.. 1991, 55(4): 1119-1123.
- [9] 陈石良,等.高F值寡肽的研究进展[J].食品与机械,1998,(2):12-14.
- [10] Shinsuke Miyoshi et al. Structures and Activity of Angiotensin-converting Enzyme Inhibitors in an α-Zein Hydrolysate[J]. Agric. Biol. Chem. 1991, 55(5): 1313-1318.

- [11] 任国谱. 酶解玉米黄粉蛋白制备 Gln 活性肽营养液的研究[J]. 中国油脂,1999,(5):22-25.
- [12] 吴建平,等. 食品蛋白质降血压肽的研究进展[J]. 中国粮油学报,1998,(5):10-14.

欢迎订阅下列期刊

《辽宁农业科学》为双月刊,A4 开本,彩色封面,内文 64 页,逢双月 18 号出版。国内外公开发行,邮发代号 8-21,每期定价 4.50 元,全年 27.00 元。如错过订期,可直接向本刊编辑部订阅(不另收费)。地址:辽宁省沈阳市东陵路 84 号辽宁省农业科学院科技信息研究所《辽宁农业科学》编辑部 邮编:110161 电话:024-31029927 传真:024-31028713 E-mail:LNNY@Chinajournal.net.cn 开户行:农行沈阳分行马官桥分理处 帐号:<math>0801032322011

《黑龙江农业科学》为国际大 16 开本,彩色四封,64 页,双月刊,刊号 ISSN1002-2767,CN23-1204/S,邮发代号 14-61,广告经营许可证号:2301004010072,单月 10 日出版,每期定价 8.00 元,全年 48.00 元。全国各地邮局(所)均可订阅。漏订者可汇款至本刊编辑部补订(不另收邮费)。地址:哈尔滨市南岗区学府路 368 号《黑龙江农业科学》编辑部 邮编:150086 电话:0451-86668373 E-mail;nykx13579@sina.com

《天津农林科技》为双月刊,大 16 开本,每双月 15 日出版,国内统一刊号 CN12-1183/S,国际标准刊号 ISSN1002-0659,每册定价:3.5 元,全年 21 元,全国各地邮局均可订阅。邮发代号 18-127。国外订阅:中国国际图书贸易总公司(北京 399 信箱),国外代号:Q4209。国内订户也可直接向《天津农林科技》编辑部汇款订阅。地址:天津市河西区围堤道健强里 37 号,天津市农业局《天津农林科技》编辑部 邮编:300201 电话:022-28015317 E-mail:LiuZhiFen@tjny.gov.cn

《花生学报》为季刊,16 开本,40 页,每期定价 3.00 元,全年 12.00 元,由本刊发行组自行办理订阅和发行事宜,欢迎读者订阅。订刊款可直接寄到本刊编辑部或通过银行汇款。地址:青岛市李沧区浮山路 126 号山东省花生研究所《花生学报》编辑部 邮编:266100 电话:0532-7632131 传真:0532-7626832 E-mail:hsxb@163169.net

《广东农业科学》逢双月 10 日出版,大 16 开 98 页。每期定价 6.00 元,全年 36.00 元,邮发代号 46-43。可直接向编辑部订阅。地址:广州市五山广东省农科院情报所《广东农业科学》编辑部 邮编:510640 电话:020-87582498 87593196 87546495(传真)