DOI:10.16423/j.cnki.1003-8701.2008.01.016 吉林农业科学 2008,33 1): 43-46

文章编号: 1003-8701(2008)01-0043-04

氮素营养对黄瓜生长发育及产量的影响

张艳玲, 宋述尧*, 王艳, 陈姗姗

(吉林农业大学园艺学院,长春 130118)

摘 要: 主要研究了 0、80、240、400 kg/hm² 氮素营养水平下,不同品种黄瓜生长发育以及产量的差异变化。结果表明,叶面积指数、叶绿素含量、叶片及果实中硝酸盐含量随着施氮量的增加逐渐增高;在 240 kg/hm²的氮营养水平下,黄瓜的净光合速率、气孔导度均达最大值,产量最高。津青 10 和吉利十四在不同氮营养条件下的响应基本一致。

关键词:氮营养;黄瓜;产量

中图分类号: **S**642.2

Effects of Nitrogen on Growth and Fruit Yield of Cucumber

ZHANG Yan- Iing, SONG Shu- yao, WANG Yan, CHEN Shan- shan

(College of Horticulture, Jinlin Agricultural University, Changchun 130118, China)

Abstract: The changes of growth and fruit yield of different cucumber varieties under four level of nitrogen, i.e., 0, 80, 240, 400kg.hm² were studied. The results showed that when the nitrogen increased, the leaf area index, chlorophyll content, concentrates of petiole sap of leaves and fruits had gradually advanced. Under the 240kg.hm² nitrogen level, the photosynthetic rate, stomatal conductance of cucumber reached the maximum, and the fruit yield was also the highest. Jinqing 10 ' and ' Jili Shisi ' had the consistent response under different nitrogen conditions.

Key words: Nitrogen; Cucumber; Fruit yield

黄瓜在设施蔬菜生产中占重要地位,黄瓜的生长特点是营养生长与生殖生长同时进行,增产潜力大,对肥料需求量大;在所有矿物质养分中,氮素对促进作物生长发育和增产的效果最为显著。设施内蔬菜生长快,为使作物生长迅速、高产,弥补作物吸收能力的不足,生产者习惯大量施用氮肥,这在目前的蔬菜生产中已成为一种普遍现象。由此可见,蔬菜生产的高产通常是以高投入为前提的,尤其是氮肥的投入量远远超过了作物的需求量,从而导致了一系列严重的后果。过量使用氮肥不仅使蔬菜的品质下降,增加了硝酸盐含量在产品中的积累,而产量却没有相应的提高,氮肥

了氮肥利用率,造成了地表和地下水体的严重污染。 用量过高时,蔬菜的生长反而受到抑制,还降低在 这种情况下,能否科学地对氮肥施用量进行调控,已 成为当今设施农业生产中急需解决的问题。

1 材料与方法

文献标识码: A

1.1 供试材料与地点

试验于 2006 年 2~10 月在吉林农业大学蔬菜教学基地塑料大棚中进行。黄瓜采用华北型品种津青 10 和华南型品种吉利十四作为供试材料。试验土壤为草甸黑钙土,土壤肥力中等偏上,供试大棚 0~30 cm 土壤基本理化性状见表 1。

表 1 试验地土壤基本理化性状

土壤深度	土壤容重	有机质	无机氮	有效磷	交换性钾
(cm)	(g/cm³)	(g/kg)	(mg/kg)	(mg/kg)	(mg/kg)
0 ~ 30	1.3	35.6	56.91	146.24	192.4

1.2 试验设计

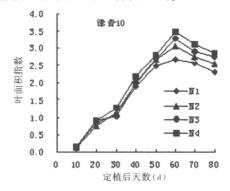
氮素 4 个处理设置为 (全氮): 0、80、240、400

收稿日期: 2007-11-19

作者简介:张艳玲 (1981-),女,在读硕士,主要从事蔬菜栽培

生理的研究。

项目基金: 吉林省重大科技攻关项目(20000202-1)


通讯作者: 宋述尧, 教授, sysongilay@126.com

kg/hm²。高畦种植, 小区面积为 5.5 m²,随机排列, 3 次重复。定植前施入少量的有机肥作为底肥。氮肥选用尿素(N 46%);磷肥选用过磷酸钙(P_2O_5 14%),施量为 180 kg/hm²;钾肥选用硫酸钾 (K_2O 50%),施量为 220 kg/hm²,氮肥的 1/3 和磷、钾肥以基肥形式一起施入,氮肥的 2/3 以追肥的形式分 3 次追施。

1.3 测定项目与方法

光合气体交换参数采用美国 CID 公司生产的 CI-340 便携式光合仪于晴天上午 9 00~11 00 测定。用于光合作用测定的叶片均为最新完全展开的功能叶(由上而下第 5 叶片), 所用数据为 3 片被测叶片的平均值。

应用叶绿素仪(SPAD-502)测定 SPAD 读数。 硝酸盐浓度应用反射仪速测。

2 结果与分析

2.1 氮营养对黄瓜叶面积指数的影响

叶片是黄瓜进行光合作用的主要场所,在生产上常常作为衡量黄瓜生长状态的主要指标。随着生育周期的推移,黄瓜的叶面积逐渐增大,叶面积指数快速增加。在黄瓜生育前期,各氮肥处理间叶面积指数变化曲线交织在一起,没有明显的区别,随着生育期的推进,作物需肥量的增加,不同氮肥处理间叶面积指数存在明显差异,且随着氮肥的增加而明显提高,当氮营养施量达400kg/hm²时达到最大,黄瓜在定植后60d叶面积指数达到最大值,之后随着定植天数的增加叶面积指数逐渐下降,表明叶片已开始衰老。且津青10和吉利十四两品种的响应基本一致(图1)。

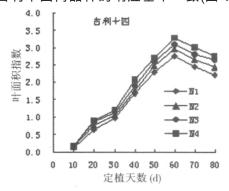
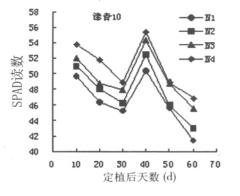



图 1 不同施肥处理对叶面积指数的影响

2.2 氮素营养对叶绿素含量的影响

叶绿素是叶绿体的重要组分,叶绿素含量已成为植物生理研究中的一项重要指标。SPAD 读数与叶绿素含量存在显著的正相关性。因此,施氮水平对黄瓜最新完全展开功能叶叶绿素含量有较大影响。由图 2 可以看出,黄瓜叶绿素含量随着氮肥施用浓度的增加而增加,其中不施肥处理的含量

最低,过量施肥处理叶绿素含量最高,过量施肥和适量施肥处理与不施肥处理间叶绿素含量差异较大,而过量施肥和适量施肥处理叶绿素值差异较小。在整个生育周期内,黄瓜叶绿素含量在定植后第 40 d 叶绿素值达到最高,以后逐渐下降。津青10 和吉利十四在不同氮肥处理下,两品种的变化趋势基本一致。

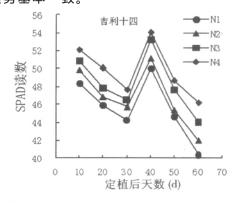


图 2 不同施氮水平下 SPAD 读数的变化动态

异(表 2), 氮营养为 240 kg/hm² 水平下的净光合速 率、气孔导度要显著高于其他氮肥处理, 胞间二 氧化碳浓度低于其他各处理; 随施氮量的增加各 处理的蒸腾速率逐渐降低。两品种津青 10 和吉 利十四各处理的反应基本一致, 吉利十四只有不 施氮肥的净光合速率高于氮肥施量为 400 kg/hm² 的处理, 且津青 10 的各项光合气体交换参数均高 干吉利十四。

表 2	不同施肥处理》	计黄瓜叶片	光合特	性的影响

品 种	氮营养处理 (kg/hm²)	净光合速率 (μmol⋅m²⋅s¹)	气孔导度 (mg/kg)	胞间二氧化碳浓度 (mmol·m²·s¹)	蒸腾速率 (mmol·m²·s¹)
津青 10	0	23.22 Bc	366.39	220.58	12.29
	80	25.16 Ab	377.76	209.18	11.95
	240	26.75 Aa	435.24	184.33	9.86
	400	22.90 Bc	365.61	248.92	9.08
吉利十四	0	18.79 Cd	212.15	171.73	9.18
	80	20.57 Bb	258.44	160.32	8.79
	240	21.95 Aa	312.51	121.30	7.95
	400	19.28 Cc	168.20	209.90	3.32

2.4 氮营养对黄瓜产量的影响

表 3 表明,不同氮肥处理间产量存在明显差 异。在同一生育期内, 氮营养为 240 kg/hm² 的处理 累积产量高于其他氮肥处理,两品种对氮肥的响 应趋势大体一致; 从整个生育周期来看, 黄瓜在采 收早期果实累积产量差异不大. 氮营养为 240

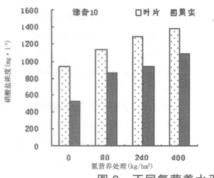
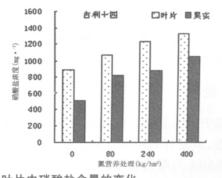

kg/hm² 的处理获得了较高的累积产量。 津青 10 和 吉利十四两品种的变化趋势大体一致,且津青 10 的产量高于吉利十四, 但吉利十四氮营养处理为 240 kg/hm² 时的累积产量均显著高于其它氮营养 处理。

表 3 氮营养对黄瓜产量积累的影响


	氮营养处理	不同采收天数的累积产量 (t/hm²)						
四 作	(kg/hm²)	10	20	30	40	50	60	70
津青 10	0	7.82 Aa	15.42 Bb	30.41 Ab	45.45 Cb	58.45 Cc	70.90 Bc	81.87 Bc
	80	8.42 Bb	15.76 Bb	38.00 Aa	54.31 ABa	66.16 ABb	79.22 Ab	85.30 Bb
	240	8.02 Bb	18.08 Aa	40.78 Aa	57.27 Aa	71.80 Aa	84.97 Aa	95.62 Aa
	400	8.46 Bb	15.27 Bb	32.43 Ab	48.44 BCb	60.95 abCb	68.76 Bc	83.77 Bbc
吉利十四	0	12.55 Aa	21.13 Bb	24.55 Bb	30.97 Bc	38.38 Bc	52.97 Bc	57.63 Bb
	80	12.16 Aa	25.42 Bb	27.67 Bb	31.83 Bc	40.25 Bc	56.08 Bb	58.33 Bb
	240	13.02 Aa	29.38 Aa	38.05 Aa	43.30 Aa	53.05 Aa	67.72 Aa	70.05 Aa
	400	12.90 Aa	23.82 Bb	26.73 Bb	33.15 Bb	43.40 Bb	52.90 Bc	54.65 Bc

氮营养对黄瓜叶片及果实中硝酸盐含量的 2.5 影响

由图 3 可知, 无论是果实还是叶片, 随着施氮 水平的提高,其硝酸盐含量均随之增加,其中氮营 养为 400 kg/hm^2 的处理与 0 kg/hm^2 的处理比较, 其硝酸盐含量在统计上均已经达到了显著水平,

从整个植株上看, 叶片中硝酸盐的含量明显高于 果实,说明随着氮肥施用量的增加,黄瓜叶片更有 利于硝酸盐的积累。不同氮营养条件下两品种的 变化趋势大体一致,但津青 10 的硝酸盐含量要高 于吉利十四。

不同氮营养水平下黄瓜果实及叶片中硝酸盐含量的变化

通过设施中不同氮营养供应条件下黄瓜植株 的生长发育变化、系统地研究氮素对黄瓜生长发 育的影响。结果表明,随着氮营养施用量的增加,当氮营养施量达 400 kg/hm² 时黄瓜的叶面积指数、SPAD 读数均达到最大值,同时植株和果实中硝酸盐含量也达最大值(图 1、图 2、图 3)。硝酸盐是强致癌物-亚硝胺的前体,其含量高低与人体健康有十分密切的关系。一般认为,人体摄入的硝酸盐 80%以上来源于蔬菜,所以硝酸盐含量是衡量蔬菜品质的重要指标。本研究发现,随氮营养供应的增加,黄瓜果实中硝酸盐含量也逐渐增高,从而使黄瓜品质下降。

240 kg/hm² 的氮素供应条件下,黄瓜植株的净光合速率和产量均达到最大值(表 1, 表 2)。在黄瓜植株生长过程中,如果氮素过量,蛋白质和叶绿素大量形成,细胞分裂加快,使营养体徒长,叶面积增大,互相遮阴,通风透光不良,影响黄瓜植株的光合作用,进而影响其产量,前人的研究结果与本研究一致。同时通风透光不良也有可能引起黄瓜各种病害的发生,同样也会造成黄瓜产量的下降。

本研究发现在 240 kg/hm² 的氮素供应水平下,同时给予适量的磷钾供应,黄瓜植株的光合性能等各项指标显著增加,提高植株的光合作用,增加了植株干物质积累,从而更好地促进黄瓜的增产丰收。

参考文献:

[1] 孙军利,赵宝龙,等.不同施肥对日光温室春茬黄瓜生长、产量和品质的影响[J].石河子大学学报(自然科学版),2006,24 (6):689-674.

- [2] 马文奇, 毛达如, 张福锁. 山东蔬菜大棚养分积累状况[J]. 磷肥与复合肥, 2000, 15(3): 65-67.
- [3] Barneix, A.J., Causin, H.F., The central role of amino acids on nitrogen utilization and plant growth.J. Plant Physiol. 1996, 149, 358-362.
- [4] 徐福利,梁银丽,张成娥,等.施肥对日光温室黄瓜和土壤硝酸盐 含量的影响[J].植物营养与肥料学报,2004,10(1):68-72.
- [5] 刘明池,陈殿奎. 氮肥用量及黄瓜产量和硝酸盐积累的关系 [J]. 中国蔬菜, 1996(3): 26-28.
- [6] 徐坤范, 艾希珍, 张晓慧, 等. 氮素水平对日光温室黄瓜品质的影响[J]. 西北农业学报, 2005(1): 162-166.
- [7] Mattson.M., Lundborg, T. Larsson, C.M. Nitrogen utilization in N-limited barley during vegetative and generative growth. Growth and nitrate uptake kinetics in vegetative cultures grown at different relative addition rates of nitrate- N. J. Exp. Bot. 1991, 43, 15-23.
- [8] Bowen, G.D., Simth, D.E. The effects of mycorrhizas on nitrogen uptake by plants in Terrestrial Nitrogen Cycles. Ecol. Bull. 1981, 33, 232-247.
- [9] 张漱茗, 江丽华. 济南市售蔬菜硝酸盐含量及施肥影响[J]. 土壤肥料, 1997(5): 22-24.
- [10] Valentine .A.J, Osborne .B.A , From of inorganic nitrogen influence mycorrhizal colonization and photosunthesis of cucumber Science Horticulturate 2002, 92, 229-239.
- [11]刘慧谨, 候海生. 氮素对黄瓜生长发育的影响[J]. 北方园艺, 2005(95): 50-51.
- [12] Juan Manuel Ruiz*, Luis Romero, Cucumber yield and nitrogen metabolism in response to nitrogen supply .J. Scientia Horticulturae .1999, 82, 309-316.
- [13] Heuer, B., Growth, photosynthesis and protein content in cucumber plants as affected by supplied nitrogen form. J. Plant Nutr. 1991, 14, 363-373.
- [14] Kotsiras .A., Olympios. C.M, Effects of nitrogen from and concentration on the distribution of ions within cucumber fruits.J. Scientia Horticulturae . 2002, 95, 175-183.

(上接第37页)

混合施用要明显好于仅施用 BABA 的效果; SI_0 的诱导效果与仅施用 8%好米得的效果相当, SI_2 与 A_1 的效果相当; SI_1 的诱导效果要明显好于 A_1 , SI_2 的诱抗效果可达 70.17%。

3 讨论

本试验中, - 氨基丁酸对水稻穗瘟病有较好的诱导抗性, 其最好的药剂计量是 0.5%浸种、250 up/mL 的 BABA 与等量的春雷霉素叶面喷雾。

BABA与春雷霉素有互作增效的作用。

参考文献:

- [1] 李惠霞, 谢丙炎, 冯春香. 植物化学诱抗剂的研究进展与展望[J]. 园艺学报, 2000, 27(增刊): 539-545.
- [2] GamLiel A, Katan J. Influence of seed and root exudates o fluorescent pseudomonas and fuugi in solarized soil. Phytopathology , 1992, 82:320-327.
- [3] 杨宇红,陈 霄,等. 氨基丁酸诱导植物抗病作用及其机理[J].农药学学报,2005,7(1):7-13.
- [4] Cohen Y, amino-butyric acid induced resistance against plant pathogens Plant Disease, 2002, 86:448-457.