文章编号:1003-8701(2012)04-0007-03

# 水稻 DUS 测试中主要数量性状分布规律的研究

## 侯佳明 ,王 威 ,周海涛 ,郝彩环 ,赵家山 ,王凤华 \*

(吉林省农业科学院/农业部植物新品种测试公主岭分中心,吉林 公主岭 136100)

摘 要:本研究以农业部植物新品种测试公主岭分中心收集的 191 份水稻品种为基础 ,在  $2010\sim2011$  年间进行种植试验 ,采集相关数据 44~000 余条。然后对每个性状的数据进行统计分析 ,确定各自的分布规律 ,并对制定性状的分级标准分别提出建议。

关键词:水稻;DUS;数量性状;分布规律中图分类号:S511

文献标识码:A

# Studies on Distribution of Main Quantitative Characters in Rice DUS Testing

HOU Jia- ming, WANG Wei, ZHOU Hai- tao, HAO Cai- huan, ZHAO Jia- shan, WANG Feng- hua\* (A cademy of A gricultural Sciences of Jilin Province/Gongzhuling Station for DUS Testing of New Plants Varieties, MOA, Gongzhuling 136100, China)

Abstract: In this study, 191 types of rice were planted in Gongzhuling Station for DUS Testing of New Plants Varieties of MOA during 2010~2011, and 44000 records was got. Finally, these data were statistically analyzed and distribution type of each character determined. Some advices about classification were raised.

Keywords: Rice; DUS; Quantitative characters; Distribution

水稻是我国重要的粮食作物之一。全国水稻种植面积约占粮食作物面积的 30%,产量接近粮食总产量的一半。我国于 1999 年加入国际植物新品种保护联盟(UPOV),并于同年公布了包括水稻在内的第一批植物新品种保护名录,共 10 个植物种类。对保护我国水稻育种者、生产者和消费者的利益具有重要意义[1]。

植物新品种特异性、一致性和稳定性(DUS)测试是我国植物新品种保护的重要环节,而针对不同物种制定的测试指南则是开展测试工作的重要依据。《植物新品种特异性、一致性和稳定性测试指南水稻》(以下简称水稻测试指南)中规定了水稻的测试性状共72个,其中11个需测量的数量性

状<sup>21</sup> ,本研究选取剑叶长度等 7 个性状作为研究 对象 ,通过分析每个性状的数据分布规律 ,总结出 各自的特点 ,为更科学准确地指导 DUS 测试工作 提供理论基础。

#### 1 材料与方法

#### 1.1 材料

在农业部植物新品种测试公主岭分中心历年测试的水稻品种中,选取出 191 个性状稳定且表现多样的品种,保证所选群体的代表性和有效性。 1.2 方法

在 2010~2011 年间对所选品种进行种植试验 ,田间设计按照水稻测试指南中的规定设计。在水稻生长期及收获后,以水稻测试指南为依据进行田间数据采集和考种 ,共收集数据 6 万余条 ,其中数量性状数据 4.4 万余条;将采集到的数据进行筛选 ,去除个别非典型数据后 ,利用 dps 及 excel 等软件对剑叶长度、剑叶宽度、茎秆长度、茎秆茎数、千粒重、主穗长度、每穗粒数等 7 个性状的

收稿日期:2012-02-25

基金项目:农业部品种资源保护项目(农财发(2011)77号文件);国家公益性行业科研专项经费项目(200903008-07)

作者简介:侯佳明(1979-),男,研究实习员,从事植物新品种 DUS测试工作。

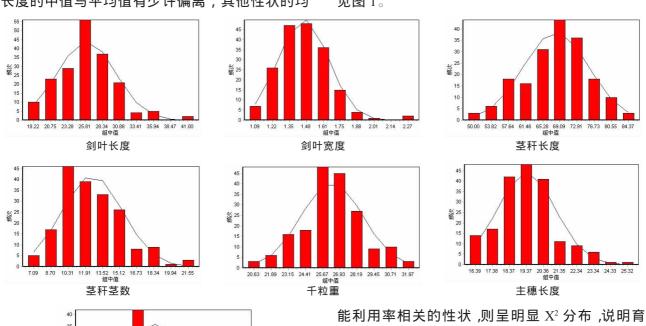
通讯作者:王凤华,女,研究员,E-mail: wfh1234@163.com

数据进行统计分析,分别计算每个性状数据的最小值、最大值、极差、中值、平均值、标准差、变异系数,并分别绘制各性状数据的频次分布直方图,判定数据分布类型,对数据概率曲线的形成原因及分级标准进行分析。

# 2 结果与分析

### 2.1 对数量性状变异的分析

对种植的 191 份水稻材料的主要数量性状进行统计分析 ,见表 1。


| 性状   | 最小值   | 最大值    | 极差    | 中值     | 平均值 X  | 标准差 S | 变异系数   |
|------|-------|--------|-------|--------|--------|-------|--------|
| 剑叶长度 | 16.95 | 42.27  | 25.32 | 29.61  | 26.03  | 4.26  | 0.1637 |
| 剑叶宽度 | 1.02  | 2.34   | 1.32  | 1.68   | 1.46   | 0.195 | 0.1336 |
| 茎秆长度 | 48.09 | 86.28  | 38.19 | 67.19  | 68.24  | 7.25  | 0.1062 |
| 茎秆茎数 | 6.29  | 22.35  | 16.05 | 14.32  | 12.57  | 2.87  | 0.2283 |
| 千粒重  | 20.00 | 32.60  | 12.60 | 26.30  | 26.36  | 2.27  | 0.0861 |
| 主穗长度 | 15.89 | 25.82  | 9.93  | 20.86  | 19.38  | 1.69  | 0.0867 |
| 每穗粒数 | 57.00 | 229.70 | 172.7 | 143.35 | 134.52 | 35.37 | 0.2629 |

从表 1 中可以看出 ,剑叶长度、茎秆长度、主穗长度和每穗粒数 4 个性状的数据分布区间较大 ,其中每穗粒数的变异系数为 0.262 9 ,变异较大 ,说明该性状的数据分散较为明显 ,进行特异性判定时可优先考虑该性状。7 个性状中 ,只有剑叶长度的中值与平均值有少许偏离 , 其他性状的均

值均在中值附近,说明水稻的育种选育过程中,对数量性状的选择基本按照其自然生长规律进行,也表明水稻品种的多样性与整体性较好。

#### 2.2 对数量性状分布类型的分析

分别对每个性状的数据进行频次分布分析, 见图 1。



40 35 30 25 5 5 6563 8291 100.17 117.45 134.71 组中值 毎穂粒数

图 1 水稻主要数量性状数据频次分布

从图 1 中可以看出 ,茎秆长度、千粒重和每穗 粒数基本呈正态分布 ,对于这种情况 ,进行分级时 在将两端离散度较大的数据分为最低级别和最高 级别后 ,将中段数据进行平均等距划分即可 ;而剑 叶长度、剑叶宽度、茎秆茎数和主穗长度 4 个与光 能利用率相关的性状,则呈明显 X² 分布,说明育种家在选育品种时,趋向于某一特定目标,导致多个与这一目标相关的性状数据向中值外的某一区域集中。主穗长度的均值趋向于低数值区域,可能由于落粒性及茎秆茎数等性状特点,决定其育种目标难以向长穗类型发展。对于这种情况,在进行DUS测试时,应将均值附近的数据划分在该数量性状分级标准的中段,然后根据实际情况,选定每个分级的区间大小,由均值向两侧进行等距划分<sup>[3]</sup>。

### 3 结论与讨论

本研究收集了东北地区的水稻品种 191 个,通过两年的田间试验,采集相关数据 44 000 余

条 ,并结合实际情况对数据进行统计分析 ,确定了每个性状的分布方式 , 并对制定该性状的分级标准提出了建议 ,即呈正态分布的性状 ,将两端离散度较大的数据分为最低和最高级 , 然后将中段数据平均等距划分 ;而呈  $X^2$  分布的性状则采用由均值向两侧等距划分的方法。

值得注意的是,图 1 中每穗粒数性状虽然呈正态分布,但在 117.45(粒)区间附近的频次分布呈明显密集,说明该数值可能为当前育种目标下,作为产量相关性状的极限数值。可在育种和 DUS测试工作中给予充分借鉴。

在对性状进行级别划分时,还应结合其他的统计分析参数来综合考虑,对  $X^2$  分布的数据 ,由均值向两侧进行划分,其每个级别的区间大小不应低于  $2 \times LSD_{0.05}^{[4]}$ 。

由于当前水稻的育种目标趋向于产量的提高,而与产量相关的性状基本为多基因控制的数量性状态,所以今后的 DUS 测试过程中如加入 DNA 指纹图谱标记或 QTL 定位等分子手段,将进一步提高测试结果的科学性和准确性,更好的保护育种家、生产者及消费者的权益。

#### 参考文献:

- [1] 马世青 . 植物新品种保护基础知识[M] . 北京 :蓝天出版社, 1999:5-10.
- [2] GB/T 19557.7《植物新品种特异性、一致性和稳定性测试指南 水稻》[S]. 2004.
- [3] 王凤华,郝彩环,周海涛,等.玉米 DUS测试主要数量性状分级方法的研究[J].玉米科学,2011,20(2):144-148.
- [4] UPOV. Document TGP/8/1: Use of statistical procedures in distinctness, uniformity and stability testing[S]. 2005.
- [5] 林荔辉 ,吴为人 . 水稻粒型和粒重的 QTL 定位分析[J] . 分子植物育种 ,2003(3) :337-342 .

(上接第6页)

表 8 2 600 ℃·d 积温区品种筛选试验的产量构成

| 品种      | 穗长(cm) | 穗宽(cm) | 秃尖(cm) | 粒 / 穗(粒) | 收获(穗 /hm²) | 收获(万粒 / hm²) | 含水量 14%百粒重(g) | 产量(kg/hm²) |
|---------|--------|--------|--------|----------|------------|--------------|---------------|------------|
| 科泰 199  | 18.7   | 4.8    | 2.1    | 522.5    | 64 000     | 3 344.00     | 34.9          | 11 645.0   |
| 吉单 522  | 19.2   | 4.7    | 1.5    | 587.9    | 56 000     | 3 292.24     | 31.7          | 10 201.7   |
| 瑞泽 1103 | 16.3   | 5.0    | 1.9    | 431.1    | 58 000     | 2 500.38     | 39.9          | 10 025.7   |
| 吉单 27   | 17.2   | 4.9    | 1.4    | 505.7    | 66 000     | 3 337.62     | 34.5          | 11 746.0   |

表 9 2 600 ℃·d 积温区品种筛选试验的产量分析

| <br>品种  | 各小区产量(kg/hm²) |             |        | <b>立是亚拉 /1/1</b> λ | 显著性水准  |         |
|---------|---------------|-------------|--------|--------------------|--------|---------|
| በበተተ    |               | 百小区厂里(Kgmm) |        | 产量平均 (kg/hm²) -    | 5%显著水平 | 1%极显著水平 |
| 吉单 27   | 11 521        | 12 038      | 11 679 | 11 746.0           | a      | A       |
| 科泰 199  | 11 442        | 11 679      | 11 814 | 11 645.0           | a      | A       |
| 吉单 522  | 10 017        | 10 458      | 10 130 | 10 201.7           | b      | В       |
| 瑞泽 1103 | 9 916         | 9 999       | 10 162 | 10 025.7           | b      | В       |

# 3 结论

- 3.1 试验得出 *2* 750℃·d 积温区平地种植最佳 品种为良玉 11、先玉 335 和吉单 550。
- 3.2 试验得出 ,2 750℃·d 积温区坡地种植最佳 品种为良玉 11 和先玉 335。
- 3.3 试验得出 ,2 600 °C·d 积温区平地种植最佳 品种为吉单 27 和科泰 199。

综上所述,吉林省湿润冷凉区 2750℃·d 积温区平地、山地种植玉米品种,以良玉 11、先玉 335和吉单 550 为主,而 2 600℃·d 积温区平地种植玉米品种以吉单 27和科泰 199 为主。试验明确根据玉米不同生态环境,采用适宜的品种,发挥品种的最高生产潜力,是该区域玉米生产达到高产、稳产、高效的根本保障。

#### 参考文献:

- [1] 郭庆法 ,王庆成 ,汪黎明 . 中国玉米栽培学[M] . 上海 :上海科 学技术出版社 ,2004 :500- 517 .
- [2] 李维岳.吉林玉米 [M].长春:吉林科学技术出版社,2000: 363-381.
- [3] 方向前,边少锋,柴寿江,等.吉林省湿润冷凉区玉米栽培技术[J].杂粮作物,2007,27(4):296-297.
- [4] 方向前,边少锋,孟祥盟,等.不同株型玉米单产达12000kg 产量构成的研究[J].吉林农业科学,2005,30(6):13-14.
- [5] 方向前,边少锋,柴寿江,等.吉林省东部半山区"四密 25" 玉米产量构成因素的浅析 [J].中国农学通报,2006,22(7): 183-185.
- [6] 方向前 ,赵洪祥 ,包君善 ,等 . 吉林省湿润冷凉区中熟玉米品种试验[J] . 吉林农业科学 ,2010 ,35(5) :10-12 .
- [7] 方向前,杨粉团,付稀厚,等.吉林省润湿冷凉区玉米吉单 198 丰产高效栽培技术体系研究[J].中国农学通报, 2008,24(4):199-202.