文章编号:1003-8701(2012)05-0042-03

NAA 和 VBI 对秀珍菇菌丝生长的影响

韦文添

(广西职业技术学院,南宁 530226)

摘 要 :研究了不同浓度的 NAA 和 V_{B_l} 对秀珍菇菌丝生长的影响。结果表明 ,浓度为 10~mg/L 的 NAA 和浓度为 10~mg/L 的 V_{B_l} 最适宜秀珍菇菌丝的生长 ,提高菌丝的长势和密度。

关键词:秀珍菇; $NAA;V_{B_1}$;生长影响

中图分类号:S646

文献标识码:A

Effect of NAA and V_{B_1} on the Mycelium Growth of *Pleurotus geesteranus*

WEI Wen-tian

(Guangxi Vocational and Technical College, Nannin 530226, China)

Abstract: Effect of the different concentration of NAA and V_{B_1} on the mycelium growth of *Pleurotus geesteranus* was studied. The results showed that 10 mg/L NAA and 10 mg/L Vitamin B_1 suited to the growth of *Pleurotus geesteranus* hyphae improve the mycelium growth and density.

Keywords: Pleurotus geesteranus; NAA; VB; Mycelium growth

秀珍菇(Pleurotus geesteranus Singer.)隶属于 真菌门(Eumycota),担子菌纲(Basidiomycetes),伞 菌目(Agaricals),侧耳科(Pleurotaceae),侧耳属(Pleurotus)。形态纤小优美,鲜嫩可口,并含有人体 所需的 8 种氨基酸 ,营养十分丰富且有保健功能 , 因此成为新兴的食用菌新秀、时尚珍菇 颇受国内 外市场的欢迎。近年来,南方部分省已得到一定的 推广。广西秀珍菇生产发展迅猛 种植面积不断扩 大,鲜菇总产量居全国第三位。NAA即 a - 萘乙 酸为植物生长调节剂,是一种外源生长激素,有助 于微生物的顶端生长和极性运输,可刺激胞外酶 的活力,促进菌丝生长、加粗。维生素是大多数真 菌菌丝生长发育的必需因子,对菌丝生长和胞外 酶活性也有刺激作用,秀珍菇菌丝生长除需要碳 源、氮源、能源和无机盐之外,维生素对秀珍菇菌 丝生长发育具有重要作用。目前有关 NAA 和维生

素对于秀珍菇菌丝生长影响的报导较少。本试验探索不同浓度的 NAA 和维生素 B_1 对秀珍菇菌丝生长的影响 ,旨在为秀珍菇生产合理的添加 NAA 和 V_B 提供参考。

1 材料与方法

1.1 供试菌种

秀珍菇母种来源于武汉市新宇食用菌研究 所。

1.2 供试材料

①PDA 培养基:马铃薯(去皮)200 g、葡萄糖 20 g、琼脂 20 g、水 1 000 mL。②NAA:上海曹杨第二试剂厂。③维生素 B_1 :国药集团化学试剂有限公司。

1.3 试验仪器及设备

手提式高压灭菌锅、培养皿(直径 90 mm)、三角瓶、托盘天平、电子天平、移液管(1 mL、10 mL)、量筒、烧杯、人工气候培养箱(LRH-250-GSI)、超净工作台(SW-CJ-2FD)等。

1.4 试验方法

作者简介:韦文添(1964-),男,硕士,副教授,主要从事食用菌教学与研究工作。

收稿日期:2012-05-16

1.4.1 基础培养基(PDA 培养基)制备

选择新鲜质量较好的马铃薯(无病、未出芽、不干缩)洗净去皮 ,挖去芽眼 ,切成薄片称取 200 g ,加水 1~000~mL ,煮沸 $10\sim15~\text{min}$,至酥而不烂的程度 ,用 $4\sim6$ 层纱布过滤一次 ,取其滤液 ,加入琼脂 20~g ,用小火加热至琼脂全部溶解 ,如果滤液不足 1~000~mL 需加水补足 ,煮沸后加入葡萄糖 20~g ,搅拌溶解 ,pH 值自然。培养基趁热量取 29~mL 分装于 250~mL 锥形瓶中。

1.4.2 NAA 对菌丝生长影响试验

NAA 浓度分别设 A (CK) :0 mg/L、B :5 mg/L、C :10 mg/L、D :15 mg/L、E :20 mg/L 等 5 个浓度处理 ,根据不同浓度 ,计算出各浓度的用量 ,配成不同浓度的营养液。试验过程中加入 29 mLPDA 培养基 ,做 3 次重复处理 ,配制中 NAA 各浓度扩大30 倍配制 ,以不加 NAA 为对照。平板试验时取不同浓度的 NAA 各 1 mL ,分别加入事先装有 29 mLPDA 培养基的 250 mL 锥形瓶中 ,然后进行常

规高压灭菌、在超净工作台上倒平板,每皿 10 mL,制成平板培养基,用经灭菌的直径为 6 mm 的打孔器,将培养活化的培养皿内秀珍菇菌丝菌落顺次打孔,然后用接种针挑取圆形的菌丝块置于各试验平板培养基中央,放于 25℃人工气候培养箱中黑暗培养。接种后第 3 d,测量菌落外缘直径并注意观察菌落长势和密度,连续测 5 d,计算出每个处理的日平均生长量。

1.4.3 V_{B1}对菌丝生长影响试验

试验方法同 1.4.2 ,并同时进行 ,所不同的是 用 V_{B_1} 代替 NAA , V_{B_1} 浓度分别设 0 mg/L、5 mg/L、 10 mg/L、15 mg/L、20 mg/L 等 5 个处理。

2 结果与分析

2.1 不同质量浓度 NAA 对秀珍菇菌丝生长的影响

秀珍菇菌丝生长速度在不同质量浓度的 NAA 培养基上有显著差异。试验结果见表 1。

表 1 不同质量浓度 NAA 对秀珍菇菌丝生长的影响

mm/d

处理	重复	重复	重复	平均长速	菌丝密度	菌丝色泽长势
A	8.75	9.00	9.00	8.92	+	洁白、较浓密
В	9.41	9.33	9.17	9.30	++	洁白、较浓密、较粗壮
C	9.70	9.78	9.64	9.71	+++	洁白、浓密、粗壮
D	9.10	9.22	9.17	9.16	++	洁白、较浓密、较粗壮
E	8.67	8.80	8.97	8.81	+	洁白、较浓密

从表 1 可看出 ,处理 C(10 mg/L)日平均生长量为 9.71 mm/d ,明显优于其它 4 种处理 ,菌落外缘直径生长快且菌丝浓密。5 种处理的数据依次为 8.92、9.30、9.71、9.16、8.81 mm/d ,与 CK(处理A)不添加 NAA 比 ,除处理 E 低于 CK 外 ,其它均好于 CK。由此可见 ,5 \sim 15 mg/L NAA 可促进秀珍

菇生长,提高菌丝粗度和密度。但在 20 mg/L 浓度下对其生长有一定的抑制作用。

经方差分析(表 2) ,试验各处理间达极显著水平。多重比较(Q 测验法)结果表明(表 3) ,处理 C 和 B 与处理 E 之间、C 与 A(CK)之间、C 与 D 之间差异均达极显著 ,B 与 A(CK)之间差异显著 ,处理 C

表 2 不同质量浓度 NAA 对秀珍菇菌丝生长量方差分析(F 测验)

变异来源	自由度	平方和	均方	F 值	F _{0.05}	$F_{0.01}$
处理间	4	1.490 0	0.372 5	27.80**	3.48	5.99
处理内	10	0.139 9	0.013 4			
总和	14	1.623 4				

表 3 不同质量浓度 NAA 对秀珍菇菌丝生长量比较(Q 测验法)

处理	均数	Xi- 8.81	Xi- 8.92	Xi- 9.16	Xi- 9.30
С	9.71	0.90**	0.79**	0.55**	0.41**
В	9.30	0.49**	0.38*	0.14	
D	9.16	0.35*	0.24		
A	8.92	0.11			
E	8.81				

注:D_{0.05}=0.31,D_{0.01}=0.41

与 B 之间差异不显著。

2.2 不同质量浓度 V_{B_1} 对秀珍菇菌丝生长的影响 秀珍菇菌丝生长速度在不同质量浓度的 V_{B_1} 培养基上有显著差异。试验结果见表 4 。

从表 4 可看出,处理 C 质量浓度为 10 mg/L

的日平均生长量为 9.67~mm/d , 明显优于其它 4 种处理 ,菌落外缘直径生长快且菌丝浓密。5~种处理 的 数 据 依 次 为 $8.88 \times 9.20 \times 9.67 \times 9.05 \times 8.87~\text{mm/d}$,与 CK(处理 A)不添加 V_{B_1} 比 ,除处理 E(质量浓度为 20~mg/L)与 CK 生长量持平外 ,其它均好

于 CK。由此可见 N_B 对秀珍菇菌丝生长有促进作用 ,提高菌丝粗度和密度。质量浓度达 20~mg/L 时对菌丝生长没有促进作用。

经方差分析(表 5),试验质量浓度间差异达极显著水平。多重比较(Q 测验法)结果表明(表 6),处

理 C 与处理 A (CK)、E、D、B 之间差异均达极显著 ,说明 V_{B_1} 质量浓度为 10 mg/L 时对秀珍菇菌丝生长的作用最大 ;B 与 A(CK)、E 之间差异显著 ,处理 B 与 D 之间差异不显著。

表 4 不同质量浓度 V_{B1}对秀珍菇菌丝生长的影响

mm/d

	重复	重复	重复	平均长速	菌丝密度	菌丝色泽长势
A	8.70	9.02	8.90	8.87	+	洁白、较浓密
В	9.25	9.20	9.15	9.20	++	洁白、较浓密、粗壮
C	9.65	9.72	9.64	9.67	+++	洁白、浓密、粗壮
D	9.05	9.00	9.10	9.05	++	洁白、较浓密、粗壮
E	9.05	8.80	8.75	8.87	+	洁白、粗密

表 5 不同质量浓度 V_{B1}对秀珍菇菌丝生长量方差分析(F 测验)

变异来源	自由度	平方和	均方	F 值	F _{0.05}	$F_{0.01}$
处理间	4	1.299 0	0.324 8	25.54**	3.48	5.99
处理内	10	0.127 1	0.012 7			
总和	14	1.426 1				

表 6 不同质量浓度 V_{B1} 对秀珍菇菌丝生长量比较(Q 测验法)

 处理	均数	Xi- 8.87	Xi- 8.87	Xi- 9.05	Xi- 9.20
С	9.67	0.8**	0.80**	0.62**	0.47**
В	9.20	0.33*	0.33*	0.15	
D	9.05	0.18	0.18		
E	8.87	0.01			
A	8.87				

注:D_{0.05}=0.30,D_{0.01}=0.40

3 小结与讨论

试验结果表明,在培养基中添加一定量的 NAA 和 V_{B_l} 对秀珍菇菌丝生长具有一定的促进作用。因为 NAA 是植物生长调节剂 ,可以诱导细胞分裂和伸长 ,促进有机体的代谢活动 ,提高多种酶的活性 ,促使菌丝对营养物质的吸收和利用 ,加快菌丝生长;而 V_{B_l} 是酸化酶及转酮醇酶的成分 ,与蛋白质、氨基酸、糖类及脂类的生物合成和呼吸链等重要代谢有着密切的关系。10~mg/L 的 NAA 和 V_{B_l} 最适合秀珍菇菌丝的生长,菌丝长势旺盛、粗壮、浓密 ,菌丝长速最高 ;但在较高浓度下 ,NAA

质量浓度达 20~mg/L 时对秀珍菇菌丝有一定的抑制作用 ,而 V_{B_1} 质量浓度达 20~mg/L 对秀珍菇菌丝生长不起作用。在秀珍菇生产中,添加适量的 NAA 和 V_{B_1} 对提高产量、缩短生产周期具有一定的意义。

参考文献:

- [1] 杨新美.食用菌研究法 [M].北京:中国农业出版社,1998: 275-282.
- [2] 冯志勇 ,王志强 ,郭力刚 ,等 . 秀珍菇生物学特性研究[J] . 食用菌学报 ,2003 ,10(3) :11-16 .
- [3] 南崇斌. 几种水溶性维生素对平菇生长发育的影响[J]. 商络师范专科学校学报,2005,19(3):111-112.

《植物遗传资源学报》征订启事

《植物遗传资源学报》为双月刊,大 16 开本,128页。定价20元,全年120元。各地邮局发行。邮发代号:82-643。国内刊号CN11-4996/S,国际统一刊号ISSN1672-1810。

本刊编辑部常年办理订阅手续,如需邮挂每期另加3元。

地 址:北京市中关村南大街12号 中国农业科学院《植物遗传资源学报》编辑部

邮 编:100081 电话:010-82105794 010-82105796(兼传真)

网 址:www.zwyczy.cn

E- mail 'zwyczyxb2003@163.com zwyczyxb2003@sina.com