不同杀菌剂对燕麦叶斑病菌的毒力和田间防效

邢 星¹,李乐乐¹,杨海明²,孙雪梅¹,王晓玲³,东保柱¹,周洪友^{1*},张笑宇^{1*} (1. 内蒙古农业大学园艺与植物保护学院,呼和浩特 010020;2. 丰镇市农牧和科技局,内蒙古 丰镇 012199;3. 锡林郭勒盟农牧技术推广中心,内蒙古 锡林浩特 026000)

摘 要:选用7种药剂进行室内毒力和田间防效试验,筛选防治燕麦叶斑病的有效药剂。50%速克灵和58%甲霜锰锌对燕麦叶斑病菌的抑制作用最好, EC_{50} 分别为0.404、0.712 μ g/mL。15% 三唑酮、50% 多菌灵、40% 福美·拌种灵拌种防效高,分别为66.55%、60.20% 和 57.52%,增产率分别为49.53%、28.29% 和 31.83%;叶面喷施效果最好的是50% 多菌灵,防效为57.52%,增产42.15%。用15% 三唑酮、40% 福美·拌种灵和50% 多菌灵拌种,叶面喷施50% 多菌灵可防治燕麦叶斑病。

关键词:燕麦;燕麦内脐蠕孢菌;燕麦叶斑病;毒力;防效

中图分类号:S512.6

文献标识码:A

文章编号:2096-5877(2023)04-0062-05

Toxicity and Control Effects of Fungicides in Oat Leaf Spot by *Drechslera avenae* XING Xing¹, LI Lele¹, YANG Haiming², SUN Xuemei¹, WANG Xiaoling³, DONG Baozhu¹, ZHOU Hongyou^{1*}, ZHANG Xiaovu^{1*}

(1. College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020; 2. Agriculture, Animal Husbandry and Science and Technology Bureau in Fengzhen, Fengzhen 012199; 3. Agriculture and Animal Husbandry Technology Promotion Center of Xilingol League, Xilinhot 026000, China)

Abstract: This study aimed to identify effective fungicides for controlling oat leaf spot caused by *Drechslera avenae*. Toxicity and field control experiments were conducted on 7 chemical fungicides. The results showed that 50% procymidone and 58% metalaxyl mancozeb had the obviously inhibition on *Drechslera avenae*, with EC₅₀ of 0.404 μg/mL and 0.712 μg/mL, respectively. The control effects of 15% triadimefon, 50% carbendazim and 40% thiram amicarthiazol were 66.55%, 60.20% and 57.52%, respectively, the yield increase rates were 49.53%, 28.29% and 31.83%. The best spraying effect was 50% carbendazim, the control effect was 57.52%, the yield increased 42.15%. 15% triazolidone, 40% thiram amicarthiazol and 50% carbendazim were mixed seed, and the foliar spraying was done using 50% carbendazim, effective control against oat leaf spot was observed.

Key words: Oat; Drechslera avenae; Oat leaf spot; Toxicity; Control effect

燕麦(Avena sativa L.)属于禾本科燕麦属。近几年因丰富的营养价值和独特的保健功效备受关注。在我国主要分布在内蒙古、河北、山西、陕西、吉林、青海和甘肃等地,目前年种植面积约70万 hm²^[1],是一种世界性栽培植物。在世界大多数燕麦种植区,燕麦叶斑病是影响产量的主要因素,如美国^[2]、加拿大^[3-4]和波兰^[5]等国家,在巴西被认为是流行最快的一种病害^[6],也是我国燕麦生

产中的主要病害^[7]。燕麦叶斑病病原菌主要是燕麦内脐蠕孢菌(Drechslera avenacea),有性态为燕麦核腔菌(Pyenophora avenae)^[7]。该病原菌可危害燕麦种子、幼芽、叶片及叶鞘,种子带菌导致不出苗或出苗弱,幼芽或幼苗死亡,巴西报道种子带菌率为54%^[8],新西兰1965~1972年调查发现种子带菌率为17%~57%^[9],成株期叶片上产生红褐色或褐色坏死斑,病斑周围有紫色至红褐色的边缘,主要发生在老叶上,严重时新叶也被危害,整个叶片布满病斑,导致燕麦苗死亡,影响燕麦的产量和质量。一般减产5%~10%,重者可达30%以上^[10]。

种子和病残体带菌是该病的主要初侵染来源,病原菌主要通过气流传播,田间发生多次再侵染,环境条件适宜时病害当年发生和流行较快。

收稿日期:2020-06-29

基金项目:国家燕麦荞麦产业技术体系项目(CARS-07-C-3)

作者简介:邢 星(1996-),男,在读硕士,从事植物病理学研究。

通讯作者:周洪友,男,博士,教授,E-mail: hongyouzhou2002@ali-

vun.com

张笑宇,女,博士,教授,E-mail: zxy2000@126.com

目前生产中不采取任何防治措施。没有高抗或免疫品种,感病品种较多[6]。深埋病残体,种子处理和叶面喷施杀菌剂能控制该病害[8.11]。目前,我国未见有防治燕麦叶斑病的药剂报道。生产中急需防治该病害的药剂,因此,本试验选用7种低毒低残留的化学杀菌剂,研究其对燕麦叶斑病菌的室内毒力和田间防效,并通过对产量及经济效益分析,筛选防治该病的高效低毒低残留的杀菌剂,同时探索其使用技术,为合理使用杀菌剂,抓住防治关键时期防治该病害提供安全高效的化学防治技术。

1 材料与方法

1.1 供试材料

1.1.1 供试病原菌

本课题组分离到的燕麦叶斑病菌R1,对燕麦

品种燕科1号具有强致病性,为燕麦内脐蠕孢菌 (Drechslera avenacea)[9]。

1.1.2 供试燕麦品种

燕科1号(内蒙古农牧业科学院选育并提供)。

1.1.3 供试药剂

选择生产中常用的7种真菌杀菌剂(表1)。

1.2 杀菌剂对燕麦叶斑病菌的室内毒力测定

将各药剂配成母液,用灭菌水分别配成5个浓度梯度的药液(表1),取药液1 mL加入冷却至45~50 ℃装有200 mL PDA培养基的三角瓶中,制成不同浓度的含药 PDA平板,以无菌水为对照。将病原菌菌株 R1在 PDA培养基上培养5 d,沿菌落边缘打直径6 mm菌饼,取1个菌饼倒置于含药和对照 PDA平板中央,重复5次,置于25 ℃培养5 d,

杀菌剂	规格	生产厂家	浓度(µg/mL)		
50% 速克灵 WP	50 g	日本住友化学株式会社	0.10 \0.20 \0.40 \0.60 \0.80		
70%甲基硫菌灵 WP	100 g	浙江威尔达化工有限公司	0.83 \ 1.11 \ 3.33 \ 6.67 \ 10.00		
15% 三唑酮 WP	50 g	四川国光农化有限公司	0.83 \ 1.11 \ 3.33 \ 6.67 \ 10.00		
50%多菌灵WP	$400~\mathrm{g}$	四川国光农化有限公司	1.56、3.12、6.25、12.50、25.00		
25% 甲霜灵 WP	100 g	浙江禾本科技有限公司	0.31 0.63 1.25 2.50 5.00		
58%甲霜锰锌WP	100 g	四川国光农化有限公司	0.40 \0.60 \0.80 \1.00 \1.20		
40%福美・拌种灵 WP	100 g	山西科力科技有限公司	3.12、6.25、12.50、25.00、50.00		

表 1 7 种杀菌剂的名称及生产厂家

用十字交叉法测菌落直径,并计算菌丝生长抑制率。生长抑制率=[(对照直径-处理直径)/(对照直径-菌饼直径)|×100%。

将生长抑制率转换成概率值作为纵坐标,以 杀菌剂浓度取对数值作横坐标,绘制不同药剂的 毒力曲线,计算药剂对菌株R1的EC₅₀。

1.3 不同杀菌剂对燕麦叶斑病的田间防效及经 济效益分析

试验于2017年在内蒙古武川县大豆铺村进行。试验设11个处理,7种杀菌剂叶面喷施:70%甲基硫菌灵600倍液、50%速克灵2000倍液、25%甲霜灵800倍液、58%甲霜锰锌500倍液、50%多菌灵500倍液、15%三唑酮600倍液、40%福美·拌种灵500倍液;3种药剂拌种处理,40%福美·拌种灵药种比1:500、15%三唑酮药种比1:500和50%多菌灵药种比1:1000,以清水处理为对照。3次重复,小区面积为20㎡,完全随机设计,外设保护行。用种量为300 kg/hm²。5月25日播种。拌种处理,即播种前对燕麦种子按药种比进行拌种,现拌现种;叶面喷施于7月15日(燕麦扬花期)按稀释倍数

稀释喷施药剂。于8月1日和28日调查2次,调查方法每小区按对角线5点随机取100片叶片,按下列病情分级标准调查病级,计算病情指数和防效。燕麦成熟期取样1 m²,记录株高、小穗数、穗粒数、千粒重、产量,并分析经济效益。

病情分级标准:0级,叶无任何病斑;1级,病斑占叶面积的1%~10%;2级,病斑占叶面积的11%~25%;3级,病斑占叶面积的26%~50%;4级,病斑占叶面积的50%以上。

病情指数=[∑(各级病叶数×病级数)/(调查的总病叶数×病情最高代表值4)]×100

防效(%)=[(对照病情指数-处理病情指数)/ 对照病情指数|×100

1.4 数据分析处理

采用 SPSS 18.0 软件进行方差分析, Duncan's 新复极差法进行差异显著性检验。

2 结果与分析

2.1 不同杀菌剂对病原菌的毒力

毒力测定结果(表2)表明,抑菌效果较好的

杀菌剂	回归曲线	相关系数	卡方检验	95%置信区间	$EC_{50}(\mu g/mL)$
50% 速克灵	y=5.473+1.2x	0.930	1.889	0.170~0.958	0.404
70%甲基硫菌灵	y=3.595+1.926x	0.992	0.024	0.009~3 281.852	5.365
15%三唑酮	y=4.164+1.471x	0.999	0.003	0.052~265.372	3.705
50%多菌灵	y=4.581+1.364x	0.989	0.135	0.289~14.404	2.028
25% 甲霜灵	y=4.419+1.551x	0.942	1.346	0.969~5.683	2.367
58%甲霜锰锌	y=5.195+1.326x	0.979	0.296	0.069~7.399	0.712

0.374

0.899

表2 不同药剂对菌株 R1 菌丝的毒力

是 50% 速克灵和 58% 甲霜锰锌, EC_{50} 分别为 0.404、0.712 μ g/mL; 其次是 50% 多菌灵、25% 甲霜灵、15% 三唑酮; 70% 甲基硫菌灵和 40% 福美•拌种灵抑制效果较差。

y=4.122+0.849x

2.2 杀菌剂对燕麦叶斑病的田间防效及经济效益分析

2.2.1 杀菌剂对燕麦叶斑病的田间防效

40%福美·拌种灵

由表 3 可知,各处理药剂均有一定的防效。不同杀菌剂拌种防效均比叶面喷施效果好,15%三唑酮拌种效果最好,防效为66.55%,其次是50%多菌灵和40%福美·拌种灵。叶面喷施防效最好的是50%多菌灵,防效为57.52%,其次是15%三唑酮和40%福美·拌种灵,再次是50%速克灵和70%甲基硫菌灵,25%甲霜灵和58%甲霜锰锌防效较差。

2.2.2 杀菌剂对燕麦产量的影响

表 4 结果表明,各杀菌剂对燕麦均安全没有 药害,且能不同程度地增加产量。除 15% 三唑酮 处理的千粒重和对照没有差异外,其他杀菌剂处理的千粒重均明显高于对照。增产最高的是15%

10.792

2.397~48.586

表3 杀菌剂对燕麦叶斑病的防治效果

杀菌剂	病情	指数	防效(%)		
示 困剂	8月1日	8月28日	8月1日	8月28日	
50% 速克灵	23.00c	36.83ab	30.49	26.09	
70%甲基硫菌灵	29.96a	37.17ab	9.46	25.41	
25%甲霜灵	30.13a	41.33b	8.95	17.06	
58%甲霜锰锌	30.00a	42.00b	9.34	15.71	
40%福美·拌种灵	26.71b	24.83c	19.28	50.17	
15%三唑酮	28.00ab	23.50c	15.38	52.84	
50%多菌灵	29.38a	21.17c	11.21	57.52	
40%福美·拌种灵	29.46a	21.17c	10.97	57.52	
(拌种)					
15%三唑酮(拌种)	30.71a	16.67e	7.19	66.55	
50%多菌灵(拌种)	28.79ab	19.83d	12.99	60.20	
CK	33.09a	49.83a			

注:不同小写数字表示差异显著(P<0.05),下同

表 4 杀菌剂处理对燕麦产量及构成因素的影响

杀菌剂	株高(cm)	小穗数(个)	穗粒数(个/穗)	千粒重(g)	产量(kg/hm²)	增产(%)
50% 速克灵	100.0a	17.6a	30.8d	25.66a	2 006.7e	7.20
70%甲基硫菌灵	101.4a	12.2e	52.4b	24.64a	1 995.8cd	6.62
25% 甲霜灵	88.8b	16.8ab	53.0b	24.58a	2 022.1e	8.03
58%甲霜锰锌	100.2a	13.2e	51.8b	24.18a	2 224.7e	18.85
40%福美·拌种灵	103.0a	14.0bc	42.8e	23.24a	1 970.3cd	5.26
15%三唑酮	105.8a	18.0a	33.0d	22.44ab	1 875.1d	0.17
50%多菌灵	106.2a	17.0a	54.2b	23.44a	2 660.8a	42.15
40%福美·拌种灵(拌种)	108.4a	19.0a	65.2a	25.10a	2 467.6b	31.83
15%三唑酮(拌种)	114.4a	15.6b	50.4b	25.04a	2 798.9a	49.53
50%多菌灵(拌种)	105.4a	19.8a	57.0ab	23.32a	2 401.4b	28.29
CK	103.3a	12.3c	23.4e	21.12b	1 871.85d	0

三唑酮拌种,增产率为49.53%,其次是50%多菌灵叶面喷施,增产率为42.15%;再次是40%福美拌种灵拌种和50%多菌灵拌种,其他杀菌剂增产效果稍差。

2.2.3 经济效益分析

由表5可知,用15%三唑酮拌种成本最低,每公顷用药成本需15元,增加产量收益最高,每公顷增加收益1854.10元,除去成本每公顷净增加收

	稀释	EC ₅₀	田间防效	产量	产量增加	产量增加的	防治费用	净增加收益
₹/JU/	倍数	$(\mu g\!/mL)$	(%)	(kg/hm^2)	(kg/hm^2)	收益(元/hm²)	(元/hm²)	(元/hm²)
50% 速克灵	2 000	0.404	26.09	2 006.7	134.85	269.70	37.5	232.2
70%甲基硫菌灵	600	5.365	25.41	1 995.8	123.95	247.90	75	172.9
25% 甲霜灵	800	2.367	17.06	2 022.1	150.25	300.50	75	225.5
58%甲霜锰锌	500	0.712	15.71	2 224.7	352.85	705.70	75	630.7
40%福美·拌种灵	500	10.792	50.17	1 970.3	98.45	196.90	90	106.9
15%三唑酮	600	3.705	52.84	1 875.1	3.25	6.50	60	-53.5
50%多菌灵	500	2.028	57.52	2 660.8	788.95	1 577.90	30	1 547.9
40%福美·拌种灵(拌种)	1:500	10.792	57.52	2 401.4	529.55	1 059.10	18	1 041.1
15%三唑酮(拌种)	1:500	3.705	66.55	2 798.9	927.05	1 854.10	15	1 839.1
50%多菌灵(拌种)	1:1 000	2.028	60.20	2 467.6	595.75	1 191.50	15	1 176.5
CK				1 871.85				

表 5 药剂防治燕麦叶斑病的经济效益分析

益1839.10元。其次是50%多菌灵叶面喷施,每公顷需30元成本,产量增加的收益1577.90元,除去成本每公顷净增加收益1547.90元。50%多菌灵拌种和40%福美·拌种灵拌种每公顷净增加收益1176.50元和1041.10元。58%甲霜锰锌叶面喷施的净增加的收益是630.70元。15%三唑酮叶面喷施净收益是负值。

3 结论与讨论

50% 速克灵和58% 甲霜锰锌对燕麦叶斑病菌的抑制作用最好。50% 多菌灵、15% 三唑酮和40% 福美·拌种灵拌种,50% 多菌灵叶面喷施防效高,成本低,增加收益高。

田间试验杀菌剂拌种防效更好,可能是由于种子带菌量较高,土壤病残体带菌量较少。在内蒙古西部地区燕麦常作为马铃薯的轮作作物很少连作,病残体可能被充分降解。另外,种子处理成本较低,施入田里的化学药剂也较少,对环境影响小,建议最好使用50%多菌灵(1:1000)、15%三唑酮(1:500)、40%福美·拌种灵(1:500)拌种,严重时用40%多菌灵500倍液叶面喷施。最佳方案15%三唑酮按药种比1:500拌种,如果田间危害比较严重的情况,再用50%多菌灵500倍液叶面喷施。

针对这个病害的杀菌剂报道很少,使用氟环唑可明显减轻燕麦感病品种叶斑病的发生程度^[12]。盆栽试验中用甲基硫化砷拌种可以完全控制该病害,克菌丹、70%克菌丹和麦穗宁(fuheridazol)混剂控制率为75%^[13]。

三唑酮是一种高效低毒低残留、内吸性强、持效期长的三唑类杀菌剂。主要是通过抑制菌体麦

角甾醇的生物合成,抑制或干扰菌体吸器及附着 孢的发育,及菌丝生长和孢子形成。本试验结果 15%三唑酮按1:500药剂量和种子量拌种,防效 高,增产,经济效益最好。

多菌灵为高效低毒内吸性杀菌剂,有保护和内吸治疗作用。对人畜低毒,对鱼类毒性也低。干扰病原菌有丝分裂中纺锤体的形成,影响细胞分裂,起到杀菌作用。试验中50%多菌灵不论是从防治效果、田间增产,还是从防治费用来看,都是生产实际中较适宜的杀菌剂。

福美·拌种灵是由拌种灵与福美双复配,具有内渗作用,可进入种皮或种胚,杀死种子表面及潜伏在种子内部的病原菌,亦可在种子发芽后进人幼芽和幼根,保护幼苗免受土壤中病原菌的侵染。本试验中40%福美·拌种灵拌种防效较高,福美双浸种也能很好地控制该病害^[13],与本研究结论一致。

用戊唑醇研究施药最佳时间是旗叶期或抽穗期,但不能完全控制该病害,受环境条件和品种抗性的影响[14]。本试验是在燕麦扬花期喷施药剂。由于发病程度受到环境条件、品种抗性及种植时间等多种因素的影响,因此不同地区使用药剂要灵活掌握施药时间,抓住防治的关键时期。

试验首次对燕麦叶斑病防治药剂进行筛选, 并探讨了使用技术,具有一定的应用价值,还需进一步筛选更多药剂并研究其使用技术,用于药剂的混用和轮换使用,并协同使用生物菌剂增加防效^[15-16],减少化学农药的使用量。

参考文献:

[1] 张宗文,郑殿生,林汝法.燕麦和荞麦研究与发展[M].北

- 京:中国农业科学技术出版社,2010:1.
- [2] Frank J A, Christ B J. Rate-limiting resistance to *Pyrenophora* leaf blotch in spring oats[J]. Phytopathology, 1988, 78(7): 957–960.
- [3] Clear R M, Patrick S K, Gaba D. Prevalence of fungi and fusariotoxins on oat seed from Western Canada, 1995–1997[J]. Canadian Journal of Plant Pathology, 2000, 22(3): 310–314.
- [4] Xue A G, Chen Y. Diseases of oat in central and Eastern Ontario in 2018[J]. Canadian Journal of Plant Pathology, 2019, 41 (1)(Supplement): 87-88.
- [5] Cegielko M, Kiecana I, Kachlicki P, et al. Pathogenicity of Drechslera avenae for leaves of selected oat genotypes and its ability to produce anthraquinone compounds[J]. Acta Scientiarum Polonorum-Hortorum Cultus, 2011, 10(2): 11-22.
- [6] Silva M R, Martinelli J A, Federizzi L C, et al. Lesion size as a criterion for screening oat genotypes for resistance to leaf spot [J]. European Journal of Plant Pathology, 2012, 134(2): 315-327.
- [7] 张笑字,孙雪梅,周洪友,等.燕麦叶斑病病原菌鉴定及其 生物学特性[J].植物保护学报,2017,44(3):473-480.
- [8] Carmona M A, Zweegman J, Reis E M. Detection and transmission of *Drechslera avenae* from oat seed[J]. Fitopatologia Brasileira, 2004, 29(3): 319-321.
- [9] Sheridan B J E, Tan P E T. Incidence and survival of Pyrenophora avenae in New Zealand seed oats[J]. New Zealand Jour-

- nal of Agricultural Research, 1973, 16(2): 251-253.
- [10] 袁军海,曹丽霞,石碧红,等.冀西北地区燕麦主栽品种(系)对叶斑病抗性鉴定[J].中国植保导刊,2014,34(2):31-34.
- [11] Bocchese C A C, Martinelli J A, Federizzi L C, et al. Infection process and spot development on kernels of white oats with differentiated levels of resistance against *Pyrenophora chaetomioi*des[J]. Fitopatologia Brasileira, 2006, 31(3): 284–290.
- [12] Dietz J I, Schierenbeck M, Simón M R. Impact of foliar diseases and its interaction with nitrogen fertilization and fungicides mixtures on green leaf area dynamics and yield in oat genotypes with different resistance[J]. Crop Protection, 2019, 121: 80-88.
- [13] Sheridan B J E, Whitehead J D, Spiers A G. Control of mercury-resistant *Pyrenophora avenae* on seed oats with methyl arsenic sulphide[J]. New Zealand Journal of Experimental Agriculture, 1973, 1(2): 127-130.
- [14] Sooväli P, Koppel M. Timing of fungicide application for profitable disease management in oat (Avena sativa L.) [J]. Agriculture, 2011, 98(2): 167–174.
- [15] 王鹏,韩娟,国淑梅,等.土壤微生物菌剂对大棚油桃植株特性的影响研究[J].东北农业科学,2019,44(2);52-56.
- [16] 朱 峰,王继春,田成丽,等.枯草芽胞杆菌GB519发酵液菌体数量和芽胞率检测方法的比较[J]. 东北农业科学,2019,44(6):49-52.

(责任编辑:王 昱)

(上接第17页)

- [11] 张俊华,张佳宝,李立平.基于冬小麦植被指数的氮肥调控技术研究[J].土壤学报,2007,44(3):550-555.
- [12] 李新伟,田 敏,肖 新,等.基于小麦养分快速诊断的施肥决策与控制系统设计[J]. 东北农业科学, 2019, 44(2): 23-27.
- [13] Arvind K S, Jagdish K L, Singh V K, et al. Calibrating the leaf color chart for nitrogen management in different genotypes of rice and wheat in a system perspective[J]. Agronomy Journal, 2004, 96: 1606–1621.
- [14] 吴 勇.河西灌区紫花苜蓿高效生产的施肥效应研究[D]. 兰州:甘肃农业大学,2021.
- [15] 陆景陵. 植物营养学(上册)[M]. 北京: 中国农业大学出版 社,2002:35-37.
- [16] 谭金芳,张自立,邱慧珍.作物施肥原理与技术[M].北京:中国农业大学出版社,2003:29-43.
- [17] 魏双雨,李 敏,吉文丽,等.适宜氮磷钾用量和配比提高油用牡丹产量和出油量[J].植物营养与肥料学报,2019,25 (5):880-888.
- [18] 邓小强,邓金池,汪 亮. 氮磷钾配施对杂交玉米禾玉 9566 农艺性状、产量与养分吸收利用的影响[J]. 作物杂志,2016 (4):156-161.
- [19] 吴 兵,高玉红,谢亚萍,等.氮磷配施对旱地胡麻干物质积累和籽粒产量的影响[J].核农学报,2017,31(6):1192-

1199.

- [20] Mathe-Gaspar G, Radimszky L, Mathe P. Changes in growth parameters and water content of young canola in response to N fertilization on two site[J]. Cereal Research Communications, 2008, 36: 1495-1498.
- [21] 战秀梅,韩晓日,杨劲峰,等.不同氮、磷、钾肥用量对玉米源、库干物质积累动态变化的影响[J]. 土壤通报,2007,38 (3):495-499.
- [22] 孙丽敏,高 露,雷雅坤.河北省冬小麦氮磷钾肥产量效应研究[J].华北农学报,2018,33(S1):177-185.
- [23] 姚德龙.基于"3414"实验设计的夏玉米-冬小麦水肥效应研究[D].杨凌:西北农林科技大学,2018.
- [24] 田红梅. 氮磷钾肥对甘薯产量品质影响及光合和养分积累的调控[D]. 重庆: 西南大学, 2016.
- [25] 钟秋瓒,陈荣华,方先兰,等.红壤旱地花生"3414"肥料试验施肥效应研究[J].花生学报,2013,42(3):16-22.
- [26] 王乐政,华方静,曹鹏鹏,等.氮磷钾配施对红小豆干物质积累、产量和效益的影响[J].核农学报,2019,33(10):2058-2067.
- [27] 孙彦铭,黄少辉,刘克桐,等.河北省冬小麦施肥效果与肥料利用率现状[J].江苏农业科学,2019,47(6):60-65.
- [28] 鲁泽刚,卢迎春,张广辉,等. 氮磷钾配施对灯盏花产量和品质的影响及肥料效应[J]. 核农学报,2019,33(3):616-622.

(责任编辑:刘洪霞)