白城地区土壤养分间的相关分析

张玉坤 张桂芳 刘显利

(白城地区土肥站)

土壤有机质是土壤养分的源泉,尤其是土壤中氮素等营养元素的主要来源。因此,土壤有机质必然与全氮、碱解氮间存在着相应的内在联系,探讨这种内在关系,并对其进行相应的统计分析,以相应的数学模式来表示土壤养分间变化的规律性,对以某一种养分含量测试数据估算另种养分含量,或验证另种养分含量测试结果的准确性及可靠性有重要意义。

我们结合白城地区的第二次土壤普查工作, 对占全区总耕地面积的97.84%的主要类型土壤,即黑土、黑钙土、淡黑钙土、栗钙土、草甸土、冲积土、风沙土等7个土类,并以各土壤类型的土种有机质与全氮、全氮与碱解氮之间的对应关系,进行相关及回归分析,共得出14条直线回归方程。为了进一步探讨这些直线回归方程间的差异情况,又进行了协方差分析,结果表明,每条直线回归方程中b间差异均不显著,a间的差异均为极显著。现将统计分析结果分述如下:

一、土壤有机质与全氮

土壤有机质与全氮的相关分析, 以全区7个主 要土类 的土种有机质与全氮含量为基数,以各土类为单元,分别进行相关统计分析,结果表明,这些土类的土壤有机质与全氮含量间的相关系数(r)均达到极显著水平,并呈直线正相关。 然后以各土类的土种有机质(x)为自变量,全氮(y)为依变量,进行回归分析,共得出7条全氮与有机质的直线回归方程(详见表1)。

表 1	7 个土类土壤有机质(x)与全氮(y)相关及回归分析统计表
-----	-------------------------------

项		1		
日 土类 名 称	п	DF	r	回 归 方 程
黑 土	14	12	+0.820**	y 1=0.0314+0.6357x
黑 钙 土	47	45	+0.782**	\hat{y} 2=0.0262+0.0493x
淡黑钙土	23	21	+0.773**) s=0.0144+0.0562×
栗 钙 土	9	7	+0.933**	$\hat{y}_{4} = 0.0399 + 0.0534x$
草甸土	31	29	+0.794**	$\hat{y}_{5} = 0.0297 + 0.0553x$
冲积土	15	13	+0.952**	$\hat{y}_{6} = 0.0147 + 0.0522x$
风沙土	9	7	+0.987**	ŷ ₇ =0.0148+0.0507x

根据相关分析其相关极显著,回归亦极显著(回归的假设测验从略)。因此,可利用各土类直线回归方程,以各土类土 壤有机质的含量来预测或控制该土类的土壤全氮的含

量。按各土类进行回归分析,共得出7条直线回归方程,为了进一步探讨这些方程间的差异情况,又进行协方差分析。结果表明,用总回归方程 $\hat{y}=0.0123+0.0572x$ 来表示黑土等7个土类的土壤有机质与全氮的关系,比用各土类各自的回归方程。 $\hat{y}_1=0.0314+0.0857x$ (黑土), $\hat{y}_2=0.0262+0.0493x$ (黑 钙土); $\hat{y}_3=0.0144+0.0562x$ (淡黑钙土)……表示各自的土壤有机质与全氮的关系,极显著地增加了剩余方差($F=2.67^{\circ\circ}$),说明总回归方程不能概括各土类的回归方程。差异是由7个土类的回归线高度(a)间的极显著差异($F=4.67^{\circ\circ}$)造成的(见表2及表3)。

表 2	7个土类土壤有机质((x)与全	氮(y)资料协方差分析
-----	------------	-------	-------------

变异来源 DF	DE	ssx	SSY	SP	a	ь)	9回月	的
	35%	331	331 31	_		DF		Q	
黑土	13	6.4755	0.0123	0.2311	0.0314	0.0357	12	0.0041	
黑 钙 土	4 6	16.3168	0.0649	0.8042	0.0262	0.0493	45	0.0253	
淡黑钙土	22	5.1968	0.0275	0.2922	0.0144	0.0562	21	0.0111	0.0833
栗 钙 土	8	5.2082	0.0171	0.2781	0.0399	0.0534	7	0.0023	
草甸土	30	21.3850	0.1038	1.1832	0.0297	0.0553	29	0.0383	
冲积土	14	7.2173	0.0217	0.3767	0.0147	0.0522	13	0.0020	
风 沙 土	88	1.7622	0.0047	0.0894	0.0148	0.0507	7	0.0002)
组 内	141	63.5618	0.2520	3.2549	_	0.0512	140	0.0853	
组 间	6	57.9877	0.2477	3.6957	-0.0011	0.0637	5	0.0122	
总变异	147	121.5495	0.4997	6.9506	0.0123	0.0572	146	0.1022	

表 3 7个土类土壤有机质(x)与全氮(y)资料回归剩余方差分析

变 异 来 源	DF	Q	MS	F	Fo.05	Fo. 01
以总变异回归y 表示各土类	148	0.1022				
へ 以各士类 y _i 表 示 各 士 类	134	0.0833	C.0006			
 差 异	12	0.0189	0.0018	2.67**	1.83	2.33
其 中 b 间 差 异	6	0.0020	0.0003	0.50	2.17	2.95
其 中 a 间 差 异	6	0.0169	0.0028	4.67**	2.17	2.95
へ 以共同b y : 表示各土 类	140	0.0853	0.0006			

因此,表示土壤有机质与全氮的线性方程是一组斜率相同,而截距不同的**平行线,其** 最适方程为:

$$\hat{y}_1 = 0.0011 + 0.0512x$$
 $\hat{y}_2 = 0.0225 + 0.0512x$
 $\hat{y}_3 = 0.0232 + 0.0512x$
 $\hat{y}_4 = 0.0494 + 0.0512x$
 $\hat{y}_6 = 0.0386 + 0.0512x$
 $\hat{y}_6 = 0.0165 + 0.0512x$

二、土壤全氮与碱解氮

土壤全氮与碱解氮的相关分析,仍以全区7个主要土类的土种全氮与碱解氮含量为基数,以各土类为单元,分别进行相关统计分析,其统计结果表明,全区7个主要土类的土壤全氮与碱解氮间的相关系数(r)除栗钙土呈显著相关外, 其余均达到极显著水平,并呈直线正相关。再以各土类的土壤全氮(x)为自变量, 以碱解氮(y)为依变量, 进行回归分析,共得出7条全氮与碱解氮的直线回归方程,详见表4。

衣4 1 1	工光工	炎王贵		16(),他大汉回归为10136月48
土类名称	n	DF	r	回 归 方 程
黑土	14	12	+0.863**	ŷ 1=34.3572+746.4634x
黑钙土	47	45	+0.771**	$\hat{y} = 33.4992 + 521.024x$
淡黑钙土	23	21	+0.810**	ŷ s=4.8488+778.0291x
栗钙土	8	6	+0.771*	\hat{y} 4=14.5473+514.9415 x
草甸土	31	29	+0.614**	$\hat{y}_{6} = 40.9542 + 487.0838 \times$
土麻虾	15	13	+0.675**	y e=40.6396+425.3041x
风沙土	9	7	+0.953**	\hat{y} 7=1.2559+815.6596 x

表 4 7 个土类土壤全氮(x)与碱解氮(y)相关及回归分析统计表

据相关分析,因其相关显著或极显著,回归亦必显著或极显著(回归假设测验从略)。 因此,可利用各土类直线回归方程,以各土类的土壤全氮含量(x)(实测值或估算值) 来预测或控制该土类的土壤碱解氮含量(y)。

按各土类为单元进行回归分析,共取得7条直线回归方程,为进一步探讨这些方程间的差异情况,又进行协方差分析。结果表明,以总回归方程y=39.0357+483.0646x表示 黑土等7个土类全氛与碱解氮关系,极显著地增加了剩余方差(F=2.33**),说明总回

7人工米工馆入篇(1)上端叙篇(1) 资料协方单分析

变异来源 │ DF	DF	DF SSX	SSY	SP	a	ь	离 回 归 的			
义开木原		334	331	551 51		,	DF	Q		
黒 土	13	0.0123	9226.0350	9.1815	24.3572	746.4634	12	2372.3812		
黑 钙 土	46	0.0649	29636.9081	33.8145	33.4992	521.0247	45	12618.7200		
炎黑钙土	22	0.0275	25350.2591	21.3958	4.8488	778.0291	21	8703,7043 \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
栗 钙 土	7	0.0171	7657.9688	8.8055	14.5473	514.9415	6	3123.6512		
草甸土	30	0.1038	65250.9484	50.5593	40.9512	487.0838	29	40624.3317		
中积土	14	0.0217	8624.5400	9.2291	40.6396	425.3041	13	4699.3655		
又沙土	8	0.0047	3477 .7089	3.8336	1.2559	815.6596	7	350.7964		
il 内	140	0.2520	149224.3683	136.8193		542.9337	139	74940.5554		
且间	6	0.2292	59084.3007	95.6314	47.4876	417.2400	5	10183.0587		
3. 变异	146	0.4812	199308.6690	232.4507	39.0357	483.0646	145	87019.9576		

吉林农业科学

归方程不能概括各土类的回归方程。 其差异也是由7个土类回归线高度(a)间的极显著 差异(F=3.73**)所造成的(见表5及表6)。

表 6 7 个土类土壤全氮(x)与碱解氮(y)资料回归剩余方差分析

変 异 来 源	DF	Q	MS	F	F0.05	Fo.01
以总变异回归 y表示各土类	145	87019.9576				
以各土类y _i 表示各土类	133	71892.9503	540.5485			
 差 异	12	15127.0073	1260.5839	2.33**	1.83	2.33
其中b间差异	6	3047.6051	507.9342	0.94	2.17	2.95
其中a间差异	6	12079.4022	2013.2337	3.73**	2.17	2.95
以共同by _i 表示各土类	139	74940.5554	539.1407			

表示土壤全氮与碱解氮的线性方程仍是一组斜率相同,而截距不同的平行线,其最适方程为:

$$\hat{y}_1 = 54.9137 + 542.9337 x$$
 $\hat{y}_2 = 30.7956 + 542.9337 x$
 $\hat{y}_3 = 31.4616 + 542.9337 x$
 $\hat{y}_5 = 32.5879 + 542.9337 x$
 $\hat{y}_6 = 32.5879 + 542.9337 x$
 $\hat{y}_7 = 20.2921 + 542.9337 x$

參 考 文 献

- 〔1〕南京农 学院主编:《田闻试验和统计方法》.农业出版社,1979,219-224页。
- 〔2〕肖明耀著: 《误差理论与应用》, 计量出版社, 1985, 174-177页。
- 〔3〕白城地区土肥站:《吉林省白城地区土壤普查资料》(二),1987年。