七个番茄品种(品系)主要数量性状配 合力分析初报

孙彦萍 丛伟杰 崔长辉

(吉林省蔬菜科学研究所)

杂交育种是培育新品种的主要途径之一,而其成败的关键不仅在于亲本材料本身各性状的优劣,也在于配合力的高低。为此,在育种工作中,首先对一些表现性状优良的亲本素材,通过 F_1 代进行配合力 测 定 ,就能及早地对亲本材料进行全面了解,为准确选择亲本、选配组合提供理论依据。

本文以具有丰产、抗病、质优等特点的7个番茄品种(品系)为亲本材料,采用不完全双列杂交的方法,对5个数量性状进行配合力分析。现将结果讨论如下。

材料与方法

1987年以中蔬 4 号(A)、龙丰 大粉(B)、长春粉红(C) 3 个品种为母本;以84—20—10(D)、ohio MR-9(E)、青强23(F)、布大174(G) 4 个品种(品系)为父本,进行不完全双列杂交,共配制F1代组合12个,以此12个组合为试材,其中3个母本是近年来刚刚培育出来的 番茄新品种;父本Ohio MR-9 是由美国引入,含有Tm-2⁶ 基因,其它3个父本是稳定品系。

1988年3月下旬温床育苗,5月下旬定植于露地。试验采取随机区组法排列,3区制,1行区,行长5米,行株距60×33厘米,每小区栽植15株。在生育期间,对开花期、成熟期、前期产量、总产量和单果重等性状进行调查。

调查标准:

开花期(即播种至开花天数):调查小区中每株开花期,取平均值。

成熟期(即播种至成熟天数):调查小区中每株成熟期,取平均值。

前期产量:7月31日前小区实收商品 果产量。

总产量: 小区实收商品果产量。

单果重: 小区实收商品果产量与实收 商品果个数之比。

结果与分析。 .

(一)性状的方差分析

由表 1 看出: 5 个性状的组合间差异

前期产量: 7月31日前小区实收商品 表1 12个番茄组合5个性状的方差分析

性状	K	组	组 合		_ Ve	
	V	F	V	F	, V E	
开·花 期	0.80	0.65	16.21	13.18**	1.23	
成熟期	5.90	4.40*	13.15	9.81**	1.34	
前期产量	0.45	1.96	5.65	24.56**	0.23	
总产量	0.90	0.19	27.10	5.68**	4.77	
单果重	6.85	0.15	1565.80	33.24**	47.10	

均达到了极显著水平,说明基因效应存在差异,可进行配合力分析。

(二)配合力方差分析

由表 2 可以看出: 母 本 系 统 (P₁) 除开花期、成熟期外,其余 3 个性状的一般配合。 力方差都达到了差异显著或极 显 著 水平。父本系统(P2)的5个性状的一般配合力方差 均达到了差异极显著水平。前期产量、总产量、单果重等3个性状的特殊配合力方差达到 了差异极显著水平。

表 2

一般配合力和特殊配合力方差分析

性 状	一般配合力		特殊配合力	误 差	F		
	Vp ₁	Vp2	Vp ₁₂	Ve	p 1	P2	P ₁₂
开花期	0.15	56.90	1.20	1.23	0.12	46.26**	0.98
成 熟 期	1.25	44.80	1.30	1.34	0.93	33.43**	0.97
前期产量	.2.08	10.50	4.39	0.23	9.04**	45.65**	19.09*
总产量	17.45	43.50	22.18	4.77	3.66*	9.12**	4.65*
单果重	635.66	4470.10	423.70	47.10	13.49**	94.91**	9.00**

注; 当df1=2 df2=22 Fo.os=3.44 Fo.o1=5.72

df1=3 df2=22 F0.05=3.05 Fc.01=4.82

 $df_1 = 6$ df = 22 $F_{0.08} = 2.55$ $F_{0.01} = 3.76$

(三)配合力效应

一般配合力效应值公式: g·i=xi-x·

$$\hat{g} \cdot i = Xi - X \cdot i$$

 $\hat{\mathbf{g}} \cdot \mathbf{j} = \mathbf{x} \mathbf{j} - \mathbf{x} \cdot \mathbf{m}$

特殊配合力效应值公式:

 $\hat{S}i = Xi = \overline{x}$

1. 亲本的一般配合力效应

一般配合力主要是由基因的加性效应决定的,是可以固定遗传的。由表 3 可以看出, 开花期、成熟期一般配合力效应值最低的是F亲本,其次是A、B、G亲本。(开花期、成

表 3

一般配合力效应值(gi, gi)

注	P ₁ (i)			P2(j)			
	A	В	С	D	E	F	G
开 花 期	0.10	-0.10	0.10	1.40	2.50	-3.30	-0.30
成熟期	-0.20	-0.20	0.30	0.90	2.19	-3.20	-0.10
前期产量	1.62	-1.28	0.22	-0.60	-1.01	1.42	0.19
总产 量	-1.23	0.10	1.20	0.20	0.20	-2.90	2.49
单果重	-0.90	7.70	-6.80	11.33	19.10	-31.60	1.20

注; g i---母本的一般配合力效应值。gj---父本的一般配合力效应值。

熟期一般配合力效应值越低,说明含有此亲本的组合在后代中能分离出早熟材料)。前期 产量一般配合力效应值最高的是A亲本,其次是F、C、G亲本。总产量的一般配合力效应 值最高的是G亲本,其次是C、D、E亲本。单果重的一般配合力效应值最高的是E亲本,

其次是D、B、G亲本。

2. 组合的特殊配合力效应

特殊配合力是不能固定遗传的,只有通过杂种一代来利用这部分的效应。由表 4 可以看出,开花期、成熟期的特殊配合力效应值最低的是C×D组合,其次是A×E、A×F、B×F组合。前期产量的特殊配合力效应值最高的是B×E组合,其次是B×F、B×D组合。总产量的特殊配合力效应值最高的是C×D组合,其次是A×G、B×E组合。单果重的特殊配合力效应值最高的是B×D组合,其次是C×E、B×F、C×G、A×G组合。

表4 特殊配合力效应值(Ŝij)

组合	开花期	成熟期	前期产量	总产量	单果重
A×D	0.2	0.9	-2.30	-1.8	1.8
E	-0.9	-0.3	-0.79	-2.1	-1.2
F	0.2	-0.7	-1.82	10	-3.2
G	0.2	0.2	-0.10	2.8	2.6
$E \times D$	0.4	-0.1	1.70	-1.8	12.8
E	0.3	-0.3	2.21	2.3	-10.6
F	-0.6	0.6	1.88	D	7.0
G	-0.3	-0.1	-0.19	-0.6	-9.3
$\mathbf{C} \times \mathbf{D}$	-0.8	-0.6	0	3.5	-14.7
E	0.4	0.8	-1.99	-0.2	11.7
F	0.2	0.1	-0.62	-1.1	-3.8
G	-0.1	0	-0.19	-2.2	6.8

注: Sij——特殊配合力效应值。

表 5 12个番茄组合 5 个数量 性状的实测平均值(Xij)

组状合	- 一 元 、	成熟期 (天)	前期产量 (kg)	总产量 (kg)	单果重 (g)
A×D	76.7	121.7	5.3	14.4	161.7
E	76.7	121.7	6.4	14.1	166.5
F	72.0	116.0	7.8	14.1	113.8
G	75.0	120.0	8.2	21.2	152.4
$\mathbb{B} \times \mathbb{D}$	76.7	120.7	6.4	15.7	181.3
E	77.7	121.7	6.5	19.8	165.7
F	71.0	117.3	8.6	14.4	132.6
G	74.3	119.7	5.3	19.1	149.1
$C \times D$	75.7	120.7	6.2	22.1	139.3
E	78.0	123.3	3.8	18.4	173.5
F	72.0	117.3	7.6	14.4	107.3
G	74.7	120.3	6.3	18.6	150.7

由表 5 各性状 的实测值可以 看出, B×F、A×F组合较早熟, 而且前期产量也高。 A×G组合前期产量、总产量均高, 而且果实也较大。

由表 4 与表 5 的结果发现,特殊配合力效应值最高的组合,实测值不一定也最高。

由表 3、表 4 与表 5 的结果又可以发现,组合的某性状特殊配合力效应值较高,而且该组合中亲本的一般配合力效应值也较高的情况下,才能获得实测值高的组合。如A×F、B×F、A×G、B×E等组合就表现了这一规律。

小结与讨论

(-) 本试验的 7 个亲本12个组合的 5 个数量性状的一般配合力与特殊配合力基因型方差均较高,尤以父本系统(P_2)更为突出。

组合的特殊配合力受双亲一般配合力的影响,凡是双亲一般配合力效应值最高的组合,其特殊配合力效应值都下降,但杂种表现值较高。

在实践中,特殊配合力效应值最高的组合,往往不是性状最优组合,通常是组合的特殊配合力效应值较高,该组合中亲本的一般配合力效应值也较高的情况下,才可获得实测最优的组合。

(二)通过对一般配合力分析结果得知,F亲本的开花期、成熟期的一般配合力效应 值最低,前期产量的一般配合力效应值最高,说明有F亲本的组合,在后代中能分离出早熟、高产的好材料,因此F亲本可作为杂交育种的早熟亲本利用。

G亲本的开花期、成熟期的一般配合力效应值较低,前期产量、总产量、单果重的一般配合力效应值较高,说明有G亲本的组合,在后代中能分离出丰产、大果型的优良后代材料。所以G亲本在杂交育种中可作为丰产亲本利用。

(三)B×F组合前期产量的特殊配合力效应值较高,开花期的特殊配合力效应值较低,而且该组合中的F亲本的前期产量一般配合力效应值高,成熟期的一般配合力效应值低,实测该组合早熟,前期产量高,因此认为B×F组合是一个有利用价值的早熟组合。

A×G组合的总产量和单果重的特殊配合力效应值较高,而且该组合中亲本G的前期产量、总产量、单果重的一般配合力效应值均较高,实测该组合高产、果大,所以认为 A×G不仅是一个较优的丰产组合,而且在其后代中有希望选育出稳定的丰产新品种。

参考文献

- 〔1〕谭嵩猛; 《蔬菜杂种优势利用》, 上海出版社, 1982.
- [2] 李景富等; 三个抗TMV病毒番茄品种的利用与遗传特性分析, 《东北农学院学报》, 1984, 2, 56-62.
 - 〔3〕 刘来福等;数量遗传学基础。《遗传》,1980。

・本刊讯・

1990年我省又审(认)定了37个农作物新品种

吉林省农作物品种审定委员会于199**0**年4月5日召开了第六次常委会议,审(认)定了适宜我省种植的18种作物,37个品种。现介绍如下:

- 一、玉米 中晚熟单交种吉单133、锦单6,中早熟单交种四早2号。
- 二、高梁 中晚熟杂交种吉架 1号、四杂 4号、中熟品种 299。
- 三、水稻 中晚熟品种九稻11号,中熟品种藤系138(引),糯稻品种延粘1号、早熟品种延梗17号。、
- 四、谷子 白谷 6号、公谷61号、九谷 8号。
- 五、大麦 吉啤1号
- 六、大豆 长农5号, 吉林21号, 吉林23号, 绥农4号(认定), 吉林小粒1号。
- 七、亚麻 贝林卡(认定)。
- 八、向日葵 白葵杂2号,白葵杂3号。
- 九、甜菜 单粒型品种吉甜单1,二倍体品种吉甜201,多倍体品种吉甜301。
- 十、烟草 烤烟吉烟1号,晒烟自来红。
- 十一、青椒 通椒4号、吉椒2号。
- 十二、黄瓜 早熟品种吉杂3号。
- 十三、菜豆 早熟品种吉种引花皮。
- 十四、豌豆 早熟品种食英大豌豆1号,中早熟品种惩引软荚豌豆。
- 十五、马铃薯 加工品种春薯3号。
- 十六、甘薯 徐薯18(引)。
- 十七、果树 绿香蕉苹果。
- 十八、观赏植物 冰凌花。