高粱细菌性条纹病菌的鉴定*

袁美丽 杨玉苑 郑 清 李 亚 (音林农业大学农学系)

摘 要

在吉林省发现的高粱叶邻细菌病害,经病菌分离、培养、接种及细菌学性状鉴定,确认其 为Pseudomonas andropogonis(E. F. Smith) Stapp.

前言

近年来在吉林省的高粱上有一种细菌病害,主要危害叶片和叶鞘。主要症状表现为条一纹病斑,条文宽 1~3 mm, 延伸于叶脉间,数个病斑联合时可形成较大的斑块。 病斑色泽因品种而异,多数品种为深红褐色或紫色,少数品种为黄到黄褐色如护22为紫红色、M66696则为红褐色,而杂交种(农大8336—2)是黄褐色病斑。

高粱叶部细菌病害在国外记述有11种^{c13},国内记述3种^{c23},但国内对病原细菌未见有研究报道,本文是对高粱细菌性条纹病菌进行系统的细菌学研究的结果。

材料与方法

从长春、农安二地采集的高粱病叶用常规划线分离得 5 个菌株、经接种肯定其致病性后保存在YDC斜面上(4-6 °C),编号为 SG_1 、 SG_2 、 SG_3 、 SG_4 、 SG_5 。在以后的试验中先转至NBY斜面上培养24~48小时后使用。

致病性测定采用叶片高 压喷雾接种, 细菌 液浓度为10°/m1个细菌, 压力为2 kg/cm², 喷雾距离10~20cm。高粱品种用原自然发病的品种护22、M66696外, 还接种高粱各类型包括金光、二甩头、菲特瑞塔、白矬3、 快熟迈罗、 早熟亨加利、黄达索、早红卡佛尔、园菲、M—63656—5、九粮5号和玉米(英64、四单8、中单2号)、三叶草及菜豆(吉林快豆)。

细菌学性状的测定方法主要参考《植病研究法》(3)、《 一般细菌常用鉴定方法 》(4)、《 植物病原细菌鉴定实验指导 》(5)的有关部分进行。

血清学试验用SG1做抗原制成 抗血清后, 对SG1-5各 菌株做 试管凝 集反 应试 验和凝集素吸附反应试验。 同时用大豆细菌性斑 点病菌 Pseudomonas syringae pv. glycinea、甘兰黑腐病菌Xanthomonas campestris pv. campestries 和白菜软腐细菌Erwinia carotora subsp.carotovora作为对比菌种。

^{*} 本文为国家自然科学基金资助项目的一部分内容。

试验结果

1. 致病性和寄主范围: SG₁₋₅对高粱的致病性是一致的. 接种到护22、M66696 发病较重,其他品种高粱轻微发病。病斑色泽不因菌株而异,而与品种有关,护22仍是紫红色病斑,M66696仍是红褐色病斑。

在人工接种条件下 , SG_{1-5} 均能侵染玉米 , 先产生水浸斑 , 以后变黄色细条斑, 发亮。 SG_5 的侵染力稍弱,条斑细小。三叶草和菜豆均不感染。

- 2. 细**菌的形态和染色反应**: SG_{1-5} 均为短杆菌,大小 $1.06\sim1.13\times0.53\mu$ m 革 兰氏 阴性。 $1\sim2$ 根极鞭毛,无荚膜,无芽孢,有聚 β —羟基丁酸盐积累。
 - 3. 培养性状: SG₁₋₅在肉汁胨琼脂培养基平面上菌落白色、圆形、稍有光泽,

表: 各菌株生理生化性状

表 1	台图体生理生化性状								
性 状	试验菌株		P. andropogonis						
	SG1	SG ₅	Elliott(8)	西山幸司[7]	Gitaitis C 83	Gotoces			
10℃下生长	_	_	1 -	!	_	d			
碳源利用				-	*				
葡萄糖	+	· +	+	+	+	+			
平 糖	+	-	'	+	+	+			
阿拉伯糖	+	+	+	+	+ .				
木 塘	+	+	. +	+	+				
鼠李糟	- ,	_	_	+	+	ď			
甘露糖	+	+		+	+	+			
半乳糖	+	' +	_	+	+ 1	+			
蔗 糖	-	,	-		-)	_			
麦芽糖	-	_	-	_	~				
乳糖	-	_		d ,	(+)	(w)			
棉子糖	-	+ ·	- :	_ !		-			
甘油	_	-	_	(w)	+	, +			
甘露醇	+	-	_	+ !	4	+			
山梨醇	+	· —	-	+	+	+			
肌 醇			_	(+)	+	d			
甜醇		<u>+</u>		[ĺ	-			
亦蘇糖醇	_		_		~	-			
丰乳糖醇	_	_	· -	- 1	~	-			
水杨苷	-		_	-		-			
纤维二糖			_ `	-		_			
酒石酸钠				i – 1		_			
丙二酸钠	+	+		+		+			
柠檬酸钠	+	+		+		+			
青氨酸双水解酶	-			-	-	_			
氧化酶	- (-		-	~	_			
妾 触 酶	+	+		+	+	,+			
消酸盐还原	-	-		-	~	-			
月胶液化	_	\mathbf{w}	-	_	-	_			
流化 氢产生	- 1		-	- 1	~	_			
引哚产生	-		-	_	_	-			
定粉水解	1	-	<i>I</i> I.	- 1	(4)	_			
V.P.	-	-]		-		•			
		_		'	-				

注:+阳性发应, -阴性反应, w反应弱, ()延迟反应, d随菌株而异。

:边缘整齐、光滑、半透明,培养基不变色。在肉汁胨液中生长少,稍混浊,表面无菌膜,底部稍有沉淀,无色素产生,无异常气味。在乌氏和费美液中生长良好,在孔氏液中稍有生长。在KB培养基上菌落白色,无荧光产生。在TTC培养基上菌落较大,中间粉红色,外部深红色、呈放射状,周围有一透明圈。在D,培养基上生长极少。

- 4. 生理生化性状: 试验中 SG_{1-4} 的性状完全一致, SG_{5} 有少数性状有差异。 SG_{1} 和 SG_{5} 的生理生化性状列表于下, 并与国外有关资料作比较。表中看出 SG_{1} 与 SG_{5} 的生理生化性状大多数是一致的,少数性状有差异, SG_{1} 能利用果糖、甘露醇和山梨醇,不能利用棉子糖和甜醇;而 SG_{5} 则反之。 SG_{5} 能轻微液化明胶, SG_{1} 则不能。
- 5.血清反应:用SG₁制作的抗血清,凝集反应结果(表2)看出高粱的5个菌株基本是一致的,都能和SG₁抗血清产生凝集反应,但也稍有差异。从凝集素吸附反应结果(表3)来看,SG₁抗血清用SG₅菌株吸附后,再用SG₁₋₅菌株测定时,SG₁₋₄均在1:160倍数时有凝集反应,但凝集量很少,说明是同源细菌。而其他三种细菌均无凝集反应(表2),说明SG₁与这三种细菌无亲缘关系。

表 2

血濟学凝集反应测定结果

	SG1抗血清稀释倍数						
en at be by	1:160	1 : 320	1 : 640	1:1280	1 : 2560	ck	
SG ₁	++++	++++	++++	++++	+	_	
SG ₂	++++	++++	++++	++++	+		
SG ₃	++++	++++	++++	++++	_	_	
SG4	++++	++++	++++	+++ +	-	-	
SG ₅	++++	++++	++++	+++	_	_	
os pv. glycinea	_		-	_	-		
C.c.pv.campestris		-	_		_	_	
E. c. suvp. carotovora	-		_	~	_	-	

表3 凝集素吸附反应结果

(用SG表吸附后测定)

测定菌株	吸附后抗血清稀释倍数						
	1 : 160	1:320	1 : 640 1	: 1280	Ck		
SG1	++	_		_			
SG2	++	-	-	_			
SG3	++						
SG4	++	_	:	-	-		
SG5		' -	<u> </u>	-	-		

结论与讨论

根据细菌学性状的测试, SG为白色 菌落, 革兰氏阴性短杆菌, 有1~2根极 鞭, 有聚β一羟基丁酸盐积累, 在KB上无 荧光等性状, 可确定其为非荧光假单胞杆 菌, 从生理生化性状的测试结果, 可以认 为此细菌为Pseudomonas andropogonis(E.F.Smith)Stapp。在对玉米的

致病性、碳源利用、明胶液化和血清反应方面, SG_{1-4} 与 SG_{5} 略 有差异。 SG_{-4} 是从长春 采集的标样中分离到的,各性状是一致的。 SG_{5} 则是从农安采集的样本中分离到的,稍 有差异,这可能是由于地区间的差别造成的生理差异。这两个菌株与国外已有报道的菌株 无一完全相同,而国外的报道也不一致,可见此细菌存在种内差异。

参考文献

- (1) < Proceedings of the International Workshop on Sorghum Disease > 1978. P.385.
- 〔2〕戚佩坤:《玉米、高聚、豆子病原手册》、1978。
- 〔3〕方中达: 《植病研究法》, 农业出版社, 1979.
- 〔4〕中国科学院敞生物所细菌分类组编; <一般细菌常用鉴定方法>, 科学出版社, 1978.
- (5) Schaad, N.W. Laboratory Guide for Identification of Plant Pathogenic Bacteria>, * 1980, USA.
 - (6) Elliott, E. & Manuall of Bacterial Plant Pathogens >, 1951, USA.
- (7) 西山幸司等: Pseudomenas andropogonis によるチニーリいプ黑腐病 (Bacterial Blaick Rot to Tulip caused by Pseudomonas andropogonis), 日本植物病理学会报, 1979, 45(5)668~674.
- (8) Gitaitis, R.D. Bacterial Leaf Spot of White Clover in Geogia Plant Disease 67:913-914 (1983).
- (9) Goto et al. A Comparative Study of Pseudomonas andropogonis, P.Stizolobii, and alboprecipitans日本植物病理学会报, 1971, 37:233—241.

OF BACTERIAL STRIP OF SORGHUM Yuan Meili Yang Yugan

Zheng Qing Li Ya

(Jilin University of Agriculture)

ABSTRACT

Isolate from the bacteral leaf disease of sorghum in Jilin province was identified as Pseudomonas andropogonis (E. F.Smith) Stapp., according to its bacterogical characterization.

(上接第79页)

PHYSIOLOGICAL RESPONSE TO RARE EARTH IN GINSENG

Wang Jingyu Ma Yingchun

(Academy of Jilin Agricultural sciences, Gongzhuling, china)

- ABSTRACT

The effect of RE on the growth of Ginseng was studied. The results showed: the weight of root for one year old Ginseng was increased by 12.0% and for three year old 25.9% respectively, with the treat ment of RE at 50ppm. However at ahigh aconcentration, the root growth was inhibited. The photosythesis and content of chlorophyll, expecially chlorophyll b were increased. Also the absorbtions of mass and trace element such as, Ca, Mg, P and Cu, Mn, B, by Ginseng root was stimulated by the RI treatments.