黑土肥力特性和培肥技术的研究

第一报 黑土腐殖质含量组成 及其与肥力相关性分析*

孙宏德 李 军 尚惠贤 王柏涛 宋 钢 (吉林省农科院土肥所)

土壤有机质是指存在于土壤中的各种含碳有机化合物,大致可以分成两大类:一类为非腐殖物质,如碳水化合物,含氮化合物,含磷、含硫化合物等,另一类,为腐殖物质,是有机质中完全失去生物残体迹象的特殊化合物,如胡敏酸、富里酸、胡敏素等。根据近年来的研究,非腐殖物质约占土壤有机质总量的30~40%;腐殖物质约占60~70%。关于有机质,特别是腐殖质与土壤肥力的关系,国内外已有大量研究资料。趋向一致的看法是:首先,认为有机质是作物养分的主要源泉,资料表明,氮素的95%以上,磷素的50~70%,硫素的90%,硼和钼的大部分来自土壤有机质;其次,能改善土壤的物理和物理化学性质,土壤的结构性、通透性、渗漏性等都直接或间接地受有机质含量的影响,有机质还具有吸附性、缓冲性、刺激性等性能,可以减轻农药的残毒以及作物病害等;第三、有机质能供给土壤微生物所需的能量和养料,激发其大量繁殖,从而有利于有机养分的矿化作用和作物的吸收。对于有机质的分解规律,有机质及腐殖质组成性质,改土培肥机理等,都还没有完全研究清楚。

国内外经验证明,凡是高产稳产农田,其有机质含量一般在3~5%。近些年来,化 肥施用量逐年增加,有的高达每公顷一吨。而粮食增产幅度却不大,有的甚至出现土壤板 结、通透性差、作物病害加重等问题。不少学者认为,这与有机质归还的数量不够,土壤 腐殖质不能维持在一定水平上有关。

土壤有机质对培肥地力到底起多大作用,其动态平衡含量的适宜值为多少,以及高、低肥力土壤腐殖质组成含量变化规律如何等等,诸家看法不一,土类之间差异较大,如北方黑土有机质含量为2~6%,而南方红壤为0.5~3.5%。因此,必须对每个土类进行深入研究,做出科学的回答。

1979~1980年,我们以榆树、德惠、怀德三县为重点,对吉林省中部黑土腐殖质含量 组成及其与肥力的关系,进行了调查研究,现将初步结果报告如下。

一、黑土肥力特性和研究方法

供试黑土分布在中长铁路两侧黄土台地上, 母质为黄土状沉积物, 已有二、三百年开

^{*}本文承蒙杨国荣、高金芳、刘仲臣同志审阅,特此致谢。

发历史。 据现有资料统计,黑土面积为200多万公顷,占全省总面积的11%; 耕地面积近150万公顷,占全省耕地面积的32%。 土质肥沃,雨量充足,年降水量500~600毫米,无 霜期130~140天。是全省主要商品粮基地。黑土主要理化特性见表 1。

研究方法是选择作同位形部位(岗、平、洼), 同一土种高、低肥力田块做对比。 高、低肥力根据常年玉米产量确定, 亩产800斤以上 为高肥田, 亩产600斤以下为低肥 田。同时期采取土样, 采土时间在4~5月份, 采土部位为垄沟垄帮各半, 多点混合取样, 采土深度为0~20、20~40厘米。

	表 1			土	理化	性状			
土壤名称	剖面地点	終 度 (cm)	腐殖质 (%)	全 N (%)	水解N mg/100g土	速 K:O mg/100g土	容 重 克/cm ³	总孔隙度 (%)	备注
厚层黑土	德惠县达 家沟公社 杏山大队		4.08 3.35 3.16 2.35	0.192 0.150 0.147 0.091	13.875 13.293 10.717 6.220	2.138 0.116 0.854 3.534	1.17 1.21 —	55.34 54.02 — —	荒地
厚层 黑土	同上	0 - 20 28 - 50 50 - 116 116 - 136	3.00 2.90 2.82 2.11	0.160 0.136 0.138 0.098	12.768 9.823 11.579 6.182	4.759 1.979 3.171 3.696	1.25 1.32 — —	52.70 50.39 — —	耕地

分析方法,腐殖质采用丘林法,腐殖质组分为焦磷酸钠提取一重铬酸钾法,全氮为重 铬酸钾硫酸消化法,全磷为高氯酸一硫酸酸溶一钼锑抗比色法,水解氮为扩散吸收法,速 效磷为碳酸氢钠法,全钾、速效钾为火焰光度法,物理分析为一次采样连续测定法。

二、黑土腐殖质含量、组成与肥力特性

(一)高、低肥力田块腐殖质数量的差异

黑土开垦后,腐殖质含量趋于下降。由于耕作、管理、培肥措施不同,熟化程度各异,腐殖质含量有明显差异。在调查的40个高肥力田块中,0~20厘米腐殖质含量在2.6~4.0%的占79%,而20~40厘米腐殖质含量在2.0%以上的也达74%;而调查的17个低肥力田块中,0~20厘米腐殖质含量绝大部分都在2.5%以下,20~40厘米的腐殖质含量有82%集中在2%以下。可见高肥力岛块不论是0~20还是20~40厘米,腐殖质含量都高于低肥力的田块,见表2。0~20厘米,高肥田腐殖质平均含量为2.79%,在35个样本中,

化咖土市基本铁铁人现场八大块表

項目	深度			腐	殖 质	(%)			调图
把力等级	(cm)	1.0 以下	1.0-1.4	1.5—2.0	2.1-2.5	2.6-3.0	3,1-3.5	3.6-4.0	的 田块 数
	0-20				21	46	29	4	<u> </u>
高肥力	20-40		8	23	41	23	10		40
	0-20		6	29	65				
低肥力	20-40	13	19	50	18				17

有70%波动在2.43~3.15%。而低肥田其平均含量为2.07%,在17个样本中,有70%波动在1.63~2.51%。20~40厘米,高肥田腐殖质平均含量为2.36%,低肥田为1.63%。耕层腐殖质高肥田比低肥田高35%,全氮高89%,全磷高54%。20~40厘米,高肥田比低肥田腐殖质高45%,全氮高31%,全磷高57%。随着黑土腐殖质数量增加,全氮、全磷也增高,见表3。显著性测验,高肥、低肥的腐殖质含量差的P值小于0.01,差异极显著。

表 3 高、低肥力腐殖质含量

深度(cm)	数カ	项目		总 C 量 (%)	腐殖质(%)	全 N (%)	全P:05 (%)	样本数
0	高肥	平均值标准差	Xı Sı	1.625 0.228	2.793 0.367	0,215	0.056	35
í 20	低肥	平均值标准差	X2 S2	1.250 0.157	2.073 0.447	0.113	0.036	17
20	高肥	平均值 标准差	Xı Sı	1.329 0.244	2.857 0.548	0.118	0.046	35
40	低肥	平均值标准差	X2 S2	0.959 0.238	1.629 0.412	0.090	0.029	17

(二)高、低肥力田块腐殖质质量的差异

调查研究结果表明,高肥田 0~20厘米胡敏酸加富里酸平均为0.63%,在调查的35个样品中,有70%波动在0.52~0.74%间,同层低肥田平均为0.53%,在17个样本中,有70%波动在0.43~0.61%。 耕层高肥田比低肥田高19%,20~40厘米,高肥田比低肥田高33%。胡敏酸、富里酸趋势同上。见表 4。这说明高肥田结构性、保氮性和供磷能力均比低肥田好。

表 4 高、低肥力腐殖质组分含量

深 度	5tor	平均值X和	胡敏酸	胡敏酸	富里酸	胡敏素	样本数	
(cm)	肥力	标准差S	富里酸(%)	(%)	(%)	(%)	п	
	高	$\overline{\mathbf{X}}_{\mathbf{J}}$	0.633	0.300	0.334	0.986	[
0	肥	Sı	0.111	0,085	0.054	0.163	35	
i 20	低	Z ₂	0.530	0.231	0.275	0.731		
	肥	S ₂	0.094	0.051	0.040	0.120	17	
	高	\overline{X}_{λ}	0.529	0.241	0.290	0.788		
20 j	虺	Sı	0.149	0.099	0.079	0.148	35	
j 4 0	低	X 2	0.399	0.187	0.213	0.561		
-	肥	S ₂	0.127	0.072	0.061	0.153	17	

(三) 高、低肥力田块腐殖质数量和质量在凝底层上下的差异

对于不同肥力水平的田块, 犁底层上部 (0~20厘米), 高肥田比低肥田腐殖质含量高34%, 富里酸加胡敏酸高18%, 胡敏酸高18%, 犁底层下部 (20~40厘米), 高肥田比低肥田腐殖质含量高40%, 胡敏酸加富里酸高33%, 胡敏酸高46%, 见表5。

	同、はルカロ大半点法エト資泡点の差許									
深度(cm)	肥 力 等 级	腐殖质 (%)	胡 敏 酸 + 富里酸(%)	胡 敏 酸 (%)	富里酸(%)	胡敏素				
0	高肥	2.79	0.63	0.30	0.33	0.99				
20	高、低肥	2.07	0.53	0.23	0,27	0.73				
	含量比	1,34	1,18	1.18	1.22	1.36				
	高 肥	2.36	0.53	0.24	0.29	0.79				
20 	低 肥	1.63	0.40	0.19	0.21	0.56				
40	高、低肥 含量比	1.40	1.33	1.48	1.34	1.39				

表 5 高、低肥力田块型底层上下腐殖质的差异

经过显著性测验, 0~20厘米和20~40厘米高、低肥田块腐殖质组分含量差的 P值小于0.01, 差异极显著。

从上述比较中,不难看出,高、低肥力田块肥力差异,不仅表现在犁底层以上(0~20厘米),高肥田腐殖质含量和质量高于低肥田,尤其表现在犁底层以下,即20~40厘米,高肥田腐殖质含量和质量比低肥田的差异更为突出。低肥田肥力低,产量不高不稳,与20~40厘米腐殖质含量及质量显著降低有关。

(四)腐殖质与氮、磷的关系

腐殖质和氮、磷关系也很明显。我们对一百多个高、低肥力田块的分析数据,作了统计分析: $0 \sim 40$ 厘米腐殖质含量($1.4 \sim 4.0\%$)与全N、全 $p_2 o_5$ 、水解N均呈显著相关。 其相关系数为R(与全N)=0.7861, R(与 $p_2 o_5$)=0.6128, n=118; R(与水解N)

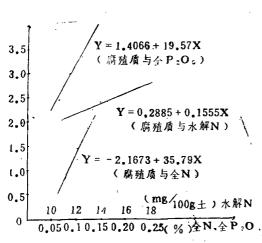


图 1 腐殖质与全N、全p20s、水解N相关图

= 0.8565, n = 18。 其回归方程式 分别为: y = -2.1673+35.79x (与全N), y = 1.4066+19.57x (与全p₂o₅),y = 0.2885+0.1555x (与水解N), 见图 1。 在统计分析中, 还发现腐殖质 含量与 氮磷比值呈 幂函数 曲线相关。 相关系数R = -0.7043,相关比 $\eta=0.8655$, t=2.7686,自由度t=29-2=27, $t_0.01=2.771$,差异极显著,见图 2 。

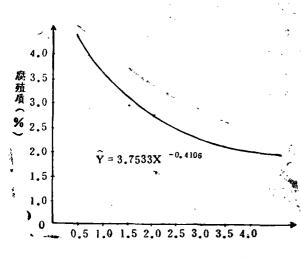


图2 腐殖质与全N/全p20s相关曲线

(五)腐殖质与土壤物理性状的关系

腐殖质不仅影响氮磷营养,而且还影响土壤容重、总空隙和通气空隙等物理性状。我们对五个腐殖质含量较多和六个腐殖质含量较少的田块做了比较。 结果表明, 0~20厘米腐殖质含量 在2.12~3.10%范围内,容重变动幅度为1.14~1.49,平均为1.25;总空隙变动在40.4~52%之间,平均46.7%;通气空隙变动花1.30~1.57,平均1.38;总空隙变动在1.30~1.57,平均1.38;总空隙变动在37.3~46.32%之间,平均42.5%;通气空隙变动范围在6.74~21.9%,平均

13.31%, 见表 6。 腐殖质含量高的(2.12~3.1%) 比含量低的(1.5~2.1%) 容重低 10.4%, 总孔隙度高9.9%, 通气空隙高35.5%。即腐殖质含量高,容重减小,总空隙和 通气空隙都增高。这表明土壤有机质多,透水透气,物理状况好。

表 6	3
-----	---

腐殖质含量与物理性状的关系

肥	深度	腐殖质含	量	容 重	克/cm³	总空隙	(%)	通气空隙	(%)	样本数
カ	(cm)	变 幅	平均	变 幅	平均	变 幅	平均	变 幅	平均	数 n
高	0	2.12	2.61	1.14	1.25	40 .4	46.7	9.97	18.03	5
肥	20	3,10	2.01	1.49		52	10.1	28.48	10.03	
低	0	1.50	4.00	1.30	4.00	37.3		6.74		
肥	28	2.10	1.80	1.57	1.38	46.32	42.5	21.9	1 3.31	6

(六) 腐殖质与作物产量的关系

土壤腐殖质有着不可代替的特殊功能,除特殊矛盾(如盐碱土、涝洼地等)外,腐殖质数量多,质量好,则土壤疏松,透水通气,保肥供肥性能好,抗逆性强,高产稳产,如表7。 高肥田腐殖质的数量和质量都好于中肥田和低肥田,其产量分别比中、 低肥田高0.5和2.5倍。 所以, 改土培肥的中心环节, 就是千方百计 地提高土壤腐殖质的数量和质量。

腐殖质和作物产量的关系

	地	点	肥力	深度 (cm)	腐殖质 (%)	胡敏酸 C (%)	富里酸 C(%)	胡敏素 C (%)	全 N (%)	全 P:Os (%)	玉米产量
	公主岭省	农科院	高肥	0 20 20 40	3.13 2.61	0.29	0.36 0.32	1.17 0.96	0.171 0.127	0.069 0.051	1207
	怀德县 凤 平顶山大	-	中肥	0 —20 20—40	2,43 1,95	0.28 0.26	0.32 0.23	0.80 0.64	0.121 0.093	0.034 0.028	774
•	同	Ŀ	低肥	0 —20 20—40	2.40 1.69	0.33 0.24	0.33 0.25	0.73 0.49	0.132 0.083	0.032 0.028	348

三、小结

- (一)由于腐殖质含量高低直接或间接地影响作物产量,并与作物所需主要养分氮、磷呈直线相关,而且明显地影响土壤物理性状。因此可以认定腐殖质是土壤肥力的核心物质,是衡量土壤肥力的重要指标。不同土壤、不同作物、不同耕作制度下腐殖质含量的适宜值不同,本文提供的资料表明,在目前生产水平上,玉米亩产800斤以上,高肥黑土0~20厘米适宜含量为2.6~4.0%,20~40厘米为1.5~3.0%。
- (二)腐殖质含量影响肥力水平, 这在玉米亩产低于600斤的黑土上表现尤其突出, 其型底层以下(20~40cm)比以上(0~20cm)腐殖质含量显著降低。 调查中发现这 些田块都是多年不施或少施有机肥,而且有机肥质量低劣。因此,应结合深翻,增施优质 农家肥料,加以改良。
- (三)腐殖质含量与全氮、全磷比值呈幂函数曲线相关。即随着腐殖质含量提高,氮磷比值降低,全磷量增加明显。在目前化肥品种单一,氮肥多而磷肥少的情况下,可以通过增施优质有机肥,以平衡氮磷比例,增加氮肥肥效。

参 考 文 獻

- 〔1〕陈思凤等 黑土肥力的基础物质与土体构型的某些性质及其相互关系 辽宁土壤学会1979年论文集
- 〔2〕杨国荣 吉林省土壤肥力特性和培肥改土途径(内部资料)
- [3] 文启孝 土壤有机质的动态平衡 1980年全国土壤有机质及有机肥料会议论文