VA菌根和根瘤菌对草木犀接种试验研究

孟昭娴 董建华 刘立侠

(吉林省长岭县微生物研究所)

摘 要

用VA菌根菌和根瘤菌联合接种草木犀,单施可溶性磷肥和磷肥与氮肥混合施用两个处理的对比试验,结果表明:在单施磷肥区,菌根的侵染率比对照提高65%,固氮酶活性比对照提高2.9倍,草木犀植株干重比对照提高90.5%。磷肥与氮肥混合施用效果不好。

VA菌根(Veslcular—Absallar Mycorrhiza),是一种真菌能与植物根部形成共生联合体。它广泛存在于自然界,据Meger(1973年)估计, 绝大多数显花植物都有内生菌根、外生菌根只占3%。据Dft和Nicolson(1966) 年^{c13}首次指出VA菌根对植物的磷素营养有着重要的作用, 不但能提高可溶性磷肥的利用率, 而且还能直接吸收磷矿粉,对豆科植物具有特殊的作用。豆科植物可以和VA菌根、根瘤菌组成共生联合体^{c23}。对豆科植物的生长,提高磷的吸收、增强固氮能力都起着重要的作用。

据西班牙Azcon(1977)报导,在不灭菌的土壤上进行大田接种试验,播种苜蓿,利用根瘤菌与菌根真菌双接种,明显的提高了苜蓿》产量高达一倍以上。

本文是在施用磷肥和磷肥+氮肥的基础上, 利用VA菌根和根瘤菌对草木犀接种效果试验的初步研究。

一、试验材料和接种方法

- (一)试验地选择:以羊草为主体,未耕种过羊草草原,开垦出试验小区,土壤为碱化草甸土、全氮0.137%、全磷0.0562%、有机质2.5%、pH7.5。
- (二)试验处理分为两组,一组是每公顷施磷肥200公斤,另一组是磷肥150公斤+氮肥50公斤,在此基础上分四个处理如下: 1.对照; 2.接根瘤菌; 3.接菌根菌; 4.接根瘤菌+菌根菌。小区面积5 m²,顺序排列法,重复三次,条播,行距36cm。
- (三)供试验菌种与接种方法: VA菌根菌由中国农科院引进,为Glomus sp,草木犀根瘤菌(1号)吉林省农科院引进。

接种方法: 菌根菌接种方法,采用含有浸染率60%的苜蓿根段和含有孢子的根际土。每小区2.5公斤条施。 根瘤菌接种是将根瘤菌稀释液拌入含有菌根菌和孢子的根际土中,每克菌液含根瘤菌56亿左右。

- (四)试验牧草为二年生白花草木犀,6月10日播种,在生育期102天内不施肥,不灌水。
- (五)分析测定方法: Philli和Hyman的方法测定菌根的浸染率, 乙炔还原法测定 面氮酶活性,用凯氏定氮法: 钼兰比色法和钒钼黄比色法、测定土壤中氮、磷和植物体中·氦、磷含量。

本文曾受害林农大张梦昌老师指导,以表致谢。

二、试验结果和讨论:

(一)接种根瘤菌:菌根菌对草木犀结瘤和固氮酶活性的影响:见表1

									7-		
肥料种类	处		理		ì	侧根瘤数 个 / 株		根瘤数提高 倍 数	固 氨 酶 活性*	固氮酶活性 提高倍数	浸染率 %
磷	对			照	7.20	8.48	15.8		6.58		18.0
	接	根	瘤	菌	8.60	17.8	26.4	1.7	14.28	2.2	53.6
1	接	菌	根	菌	6.10	13,3	19.4	1,2	11,11	1.9	53.0
肥	接根	瘤菌	十萬	根菌	7.87	23.3	31.2	2.0	19.38	2.9	65.0
磷	对			照	5.20	6.15	11.4		6.47	}	13.5
肥	接	根	瘤	菌	7.70	12.4	20,1	1.8	10, 16	1.8	50.8
4 氮	接	菌	根	菌	7.50	14.4	21.9	1.9	12.45	1.9	25.0
肥	接根	瘤菌	十萬	根菌	8.10	18.0	**26.1	2.9	* 17.19	2.7	36.0

表1 固氮酶活性与侵染率

在施磷肥的基础上,单接根瘤菌,根瘤总数比对照增加1.7倍,单接菌根菌增加1.2倍,根瘤菌和菌根菌双接种增加2.0倍,固氮酶活性相应分别提高2.2倍、1.9倍和2.9倍。

在磷肥与氮肥配合施用时,单接根瘤菌,根瘤总数比对照增加1.2倍, 单接菌根菌增加1.9倍和根瘤菌与菌根菌双接种增加2.9倍,固氮酶活性也相应的提高,分别为1.8倍、1.9倍和2.7倍。

从以上分析结果看, 在施磷肥的基础上双接种根瘤总数比对照增加2.0倍, 而磷肥与氮肥配合施用时,则根瘤总数增加2.9倍。但固氮酶活性并没有相应的提高, 反之施磷区固氮酶活性高于磷肥与氮肥配合施用。说明在施磷基础上施氮肥,只能增加无效根瘤数,固氮酶活性无明显的提高。

(二)接种根瘤菌,菌根菌对浸染率的影响:见表1。

在施磷肥时, 单接根瘤菌, 根瘤总数比对照增加1.7倍,浸染率为53.6%。单接菌根菌增加1.2倍,浸染率为53.0%。而根瘤菌与菌根菌双接种增加2.0倍,浸染率为65%。

在磷肥与氮肥配合施用时,单接根瘤菌,根瘤总数比对照增加1.8倍,浸染率为50.6%。单接菌根菌增加1.9倍,浸染率为25%。 而根瘤菌与菌根菌双接种增加2.9倍, 浸染率则为36%。

以上说明在施磷肥基础上,根瘤菌与菌根菌双接种能显著的提高菌根的浸染率。而在 配合施用氮肥时浸染率提高的较少。

(三)不同处理对草木栖生长及产量的影响:见表2。

在施磷肥区,对照株高73.0cm,单接菌瘤菌88.8cm,单接菌根菌99.6cm,而双接种101.3cm。分别比对照提高1.21倍,1.36倍和1.38倍。而在氮肥+磷肥区,对照株高76.7cm,单接根瘤86.8cm,菌根菌96.7cm,而双接种103.7cm,分别比对照提高1.13倍、1.26倍和1.35倍。可看出在施磷区双接种长势均好于氮肥与磷肥配合施用。在产量上施磷区单接根瘤菌比对照增产68.5%,单接菌根菌比对照增产53.7%,双接种增产90.5%。

^{*}按微克分子C2H4/3.14×152CM/小时

^{**}和对照(CK)比较差异极显著P>0.01

肥料种类	处		理	株 高 (Cm)	株高提高倍数	茎叶干重 (克/株)	茎叶含氮量(%)	茎叶含磷 量(%)	小区产量 (斤)	增产率
磷	对 接 根		照菌	73.0 88.8	1.21	1.80 3.20	4.49	0.16	19.22 32.39	68.5
吧	接根瘤	根 第+ 菌 	菌 根菌	99.6 101.3**	1,36	3.60 4.70	4.82 5.98	0.21	29.56 36.61**	53.7 90.5
磷肥 +氮 肥	对 接 根 接 菌	瘤 根 数+菌	照 菡 菡 荫	76.7 86.8 96.7 103.7**	1.13 1.26 1.35	2.60 3.40 3.00 4.40	4.32 4.63 4.61 4.92	0.20 0.14 0.24 0.23	22.11 26.47 31.61 38.30**	19.7 43.0 73.2*

^{*}接根瘤菌+接菌根菌≤0.50不显著。

而氮肥十磷肥区单接根瘤菌, 比对照增产19.7%, 单接菌根菌增产43.7%, 双接种增产73.2%, 说明氮肥对以上处理没有明显的作用。

试验结果表明,草木犀接种菌根菌、根瘤菌、根瘤菌与菌根菌双接种对根瘤总数,固 氮酶活性,菌根的浸染率和草木犀的产量均有明显的提高。而增施氮肥没有单独施用磷肥效果显著,其原因可能与氮肥对豆科作物结瘤和固氮作用的氮效应有关。

THE EFFECTS OF DOUDLE INOCULATION WITH VAM AND RHIZOBIA ON SWEET—ELOVER

Meng Zhaoxian et al.

(Changling Institute of Microbiology, /ilin Provence)

ABSTRACT

The resulte of the trial of inoculation with both VA-mycorrhizal fungus (glomus sp.) and Rhizobia for sweet-clover showed that when the phosphate was applied alone, the infected frequence of VA-mycorrhiza was increased 65%, and the activity of nitrogenase was increased 2.9 times as compared with contral without inoculated. At addition, dry-matter of clover plant was increaced 90.5% also. But in both nitrigen and phosphorus fertilizer were applied did not gave a beneficial result to inoculated plant.

^{**}对照>0.01极显著。