土壤供锌能力与锌肥效应的研究

I吉林省主要土壤玉米缺锌临界值的研究

任 军 袁震霖 刘雅琴 张淑芬

(吉林省农科院土肥所)

关于玉米缺锌临界值的研究工作早在60年代就已经开始了,但国内外的研究结果并不一致。Brown(1971)、Sindsay(1969)提出的临界值为0.5ppm; Rathre(1978)提出的临界值为0.46ppm; Takkar(1975)提出的临界值为0.6ppm; 后来,Sindsay又提出石灰性和中性土壤缺锌临界值为0.8ppm。国内学者也有不同见解:彭琳(1980)在一楼土上的试验结果表明:土壤速效锌0.5ppm可作为楼土缺锌的临界值; 而张乃凤在华北的试验结果表明:当土壤速效锌低于0.6ppm时,施用锌肥对玉米有稳定的增产作用"1"。

70年代末国内借鉴于国外的研究成果,公认土壤速效锌0.5ppm为作物缺锌临界值。但我们在近几年的实际工作中对此值加以运用时,常会出现一些难以解释的问题。譬如,虽然土壤速效锌含量高于0.5ppm(多数是略高于此值),但不少地块仍会出现较明显的玉米缺锌症状,施用锌肥仍可表现出较明显的增产作用。因此,我们认为土壤速效锌0.5ppm不适宜作为吉林省主要土壤玉米缺锌的临界指标,为了弄清到底多少合适,几年来,我们在多种土壤上进行了试验研究。

一、研究方法与途径

本试验采用田间生物试验,室内化学分析与数理统计分析相结合的方法进行的。田间试验是1983—1986年在全省十几个县市的几十个试验点上进行的,土壤类型包括:黑土、黑钙土、淡黑钙土、草甸土、盐碱土和风沙土等主要农业土壤。供试的玉米品种为吉单101和四单8。土壤速效锌测定是在播种前采取0—20cm的耕层土壤样本,风干后采用DTPA浸提,原子吸收方法进行测定。对测得的土壤速效锌含量及其对应的玉米相对产量*进行回归分析,确定出土壤供锌能力与玉米相对产量之间的函数关系,找出玉米缺锌的临界指标,明确了土壤供锌能力与锌肥效应之间的关系。

二、试 验 结 果

(一)主要计算过程

玉米相对产量及土壤速效锌含量的原始数据列于表1。

通过对原始数据进行相关分析得知,土壤速效锌含量(x)与玉米相对产量(y)之间呈显著正相关,r=0.33**。

将土壤速效锌与玉米相对产量绘成散点图(见图 1)。从图 1 可以判定:土壤速效锌与玉米相对产量之间的关系近似指数函数 $y = a \cdot e^{b/x}$ 所代表的图形。

^{*}相对产量=对照产量/处理产量×100%。为方便起见、计算过程中只用百分数的分子表示。

表1 土壤速效锌与玉米相 对产量相关回归分析

集 号	土壤速效 锌(x)	相 对产量 (y)	编号	土壤速效 锌(x)	相对产量(y)
126	2.27	97.97	109	1.20	96.64
127	1.40	95.61	144	0.42	97.43
128	0.79	88.92	112	0.68	93.29
129	1.46	96.88	113	0.48	87.65
130	0.45	89.90	145	0.32	86.2 4
131	9.60	98.54	115	0.95	90.22
132	0.38	95.00	116	0.60	96.89
133	(.56	87.05	130	0.40	100.80
134	1.40	94.70	147	0.56	107.65
135	1.46	94.09	152	0.40	97.15
136	C.36	94.13	148	0.34	97.42
137	0.44	89.95	108	C.98	106.67
138	2.24	96. 34	111	0.96	101.40
139	0.48	88.42	118	0.40	96.53
95	0.68	88.5 0	119	0.38	88.22
140	0.08	79.17	121	0.16	92.14
141	0.30	93.39	146	0.50	91.31
142	0.23	91.30	120	0.20	89.51
106	0.56	90.36	122	0.71	91.10
143	0.28	93.17	149	0.60	98. 0 1
107	0.83	97.71			

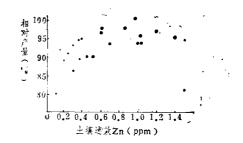


图 1 土壤速效锌与玉米相对 产量间的散点图

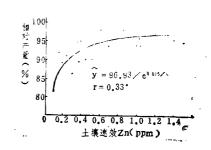


图 2 土壤速效锌对玉米相对 产量的回归曲线

对指数函数直线化,可求得曲线方程系数 a_{\bullet} b,同时可对曲线方程的代表性进行检验。 结果表 明:直 线 化方 程为 $y'=4_{\bullet}572-0_{\bullet}015x'$,由此可得 $a'=4_{\bullet}572$, $a=96_{\bullet}93$, $b=-0_{\bullet}015$ 。直线化后的两个变量(x', y')之间呈极显著负相关 $r=-0_{\bullet}533^{\bullet *}$ 。所以

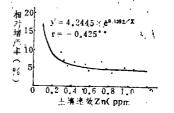
我们可以判定选择的指数方程 $y = a \cdot e^{b/x}$ 是适宜的。曲线方程为 $y = 96.93/e^{\frac{0.015}{x}}$, r = 0.33 *,标准曲线见图 2。

以直线化方程为基础,运用回归方差 分析方法,对曲线方程进行回归关系显著 性检验(见表2)。

检验结果表明:土壤速效锌含量对玉 米相对产量回归关系极显著,方程吻合度 很高,此方程完全可以代表土壤速效锌与 玉米相对产量之间的函数关系,方程可以使用。

方程回归方差分析表 表 2 自由 变异因素 平方和 方 差 F 值 度 回 0.03715 0.03715 14.51** F0.01=7.38 归 0.09985 0.00256 余 总变异 0.13700 40

0.018


当玉米的相对产量为95%时,由曲线方程 $\mathbf{y} = 96.93$ /e ^x 计算可得出玉米缺锌的临界值约为0.8ppm。

^{*}相对增产百分率=100一相对产量。

(二)土壤供锌能力与锌肥对玉米效应的关系

1。土壤供锌能力与锌肥效应的关系

在找出土壤玉米缺锌临界值的基础上,对近几 年40多个试验点的土壤速效锌含量与玉米施锌效应 (相对增产百分率*)的关系进行了分析,结果表明。 土壤速效锌与玉米相对增产百分率*之间呈 极易萎

负相关,其方程为y -4.2445×e $\frac{0.1392}{x}$, r--0.425°° (见图 3), 直线化方程为:

y' = 1.4456 + 0.1392x', r = 0.418**.

图 3 土壤供锌能力与锌肥效应之间的关系

方程的吻合度很高。故此方程 $\hat{y} = 4_{\bullet}2445 \times e^{\frac{0.1392}{x}}$ 完全可以代表土壤供锌能 力与锌 肥效应之间的函数关系。

2. 玉米施锌增产率与土壤速效锌含量的关系

当土壤速效锌含量低于0.8ppm时,玉米施锌增产率大于5%的机率为80%,平均增产16.4%;而当土壤速效锌含量高于0.8ppm时,玉米施锌增产率大于5%的机率为47%,平均增产5%。这表明,土壤 速效锌含量0.8ppm 完全可以作为我省主要土壤玉米缺锌的临界值。近几年我们应用这个数值指导生产,收到了较好的效果。

3. 玉米花白苗症的发生与土壤速效锌含量的关系

土壤是作物锌素营养的主要来源之一,土壤速效锌含量偏低是导致与加重玉米缺锌症的根本原因。据50多个玉米花白苗根际土壤速效锌含量的分析结果表明。80%的病株发生在土壤速效锌含量低于0.8PPm的土壤上,其余的多发生在土壤速效锌为0.8—1.0PPm的土壤上,故此可以断定土壤速效锌含量低于0.8PPm时,土壤供锌能力偏低,不能满足玉米对锌素营养的正常需求。

三、结果 讨论

吉林省主要土壤玉米缺锌临界值为0.8ppm(DTPA-Zn),此值高于华北地区几个省份的结果—0.6ppm左右,更高于国外的通用值—0.5ppm, 同美国 Sindsay 提出的石灰性和中性土壤缺锌的临界值相一致。其主要原因有:

(一)不同品种之间的差异是主要的原因

近几年来我们对十几个玉米品种进行了玉米品种耐锌试验表明:不同的玉米品种对锌的反应是不一致的。目前吉林省的主推品种及其自交系均属对锌反应很敏感的品种,主要同这些品种的遗传营养特性有关,使不同玉米品种的缺锌临界值有一定的差异。因此,作物的缺锌临界值有很强的区域性。

(二)不同的气候条件和土壤类型也会使作物的缺锌临界值发生改变

不少国内外的科学工作者曾经报道过,不同的气候条件和土壤类型都将对土壤锌素养分的供给性产生影响,导致土壤缺锌临界值的改变。

(三)吉林省的土壤反应与美国土壤类型基本相近

因为我省主要农业土壤多为石灰性土壤和中性土壤,与美国 Sindsay 所提出的土壤 类型是一致的,所以土壤反应是决定土壤锌有效性的主要因素之一。 (下转第76页)

2. 多元回归结果

 $Y(\%) = 79.63 - 36.9 \times (\Delta OD_1) - 62.3 \times (\Delta OD_2) + 14.7 \times (\Delta OD_3)$ r = 0.8629 其中y值为显示数值; 79.63、-36.9、-62.3、14.7分别为 K_0 、 K_1 、 K_2 、 K_3 的回归常数值; ΔOD_1 、 ΔOD_2 、 ΔOD_3 分别为样品的三个光密度值的一阶导数值。

3. 检验样品

	表 2	检	验	样	8	数据			
序号	样品名称	常规值	引机测值	〔 绝对误差 〔	序号	样品名称	常规值	引机测值	直绝对误差
1	1—PK	0.24	0.23	0.01	6	I −N	0.27	0.27	0.00
2	I—CK	0.23	0.22	0.01	7	标 3	0.28	0.28	0.00
3	I-K	0.26	0.24	0.02	8	标 28	0.29	0.29	- 0.01
4	I − PK	0.26	0.25	0.01	9	标 14.	0.32	0.30	0.02
5	I —P	0.27	0.27	0.00	10	标 15	0.30	0.31	- 0.01

^{*} 常规值及引机测值的单位是克赖氨酸/100克样品(绝干)

取标22号样品测定8次,每次测定间隔2分钟,其结果如表3。

表 3	重复测力	定数据	
次 数	1 2 3	4 5 6	7 8
	0.30 0.30 0.30	i l	

标22号样品常规值为0.30克赖氨酸/100克样品(绝干)。 实测X = 0.30,CV% = 1.56%

五、讨 论

由定标结果可以看出, 相关系数r=

 $0_{\bullet}8629$ 与文献报道值相近。最大绝对误差≤ $0_{\bullet}03$,符合一般分析结果误差范围中规定的参考值。样品重复测定结果,变异系数为CV%= $1_{\bullet}56\%$ 。说明此定标准确,测样精密度高,方法可靠。

(上接第60页)

参 考 文 献

- [1] 华中农学院土化系农化教研室编:《徵量元素营养与微肥施用》,湖北农业机械属印刷厂出版, 1984.10。
 - [2] 中国科学院南京土壤研究所:《主要作物营养失调症状图谱》,农业出版社,1982,12。