大豆结实荚数与水分、肥料和密度 等栽培因素间的数学模型的研究简报

郑秀梅 丁希泉

(吉林省农科院长自山生物资源所)

大豆结实荚数是产量构成的主要因素之一。增加每平方米结实荚数则是大豆获得高产的一个途径。但是,结实荚数是受多种因素影响,尤其是水分、肥料和密度等主要栽培因素的综合影响。为了探讨栽培措施对结实荚数的综合影响,我们从1980年开始研究水分、肥料和密度等主要栽培因素与结实荚数间的数学模型,初步取得一些结果,现总结如下:

一、试 验 设 计

试验因素为灌水量,施氮量,施磷量和密度。各因素水平及编码如表1。采用"二次

编	码	X1 灌 水 量 (毫米/次)	X2 類 量 (公斤/亩)	X ₃ 磷 量 (公斤/亩)	X₄ 密 度 (株/亩)
† 2		16	10.0	10.0	25000
+ 1		12	12 7.5		20000
0		8	5.0	5.ປ	15000
- 1		4	2.5	2.5	10000
- 2		0 0		0	5000
变化区间(Δ)		4	2.5	2.5	5000
备	注	分枝后 3 天滴灌一 次] 肥 1 / 2, 复叶追肥 1 / 2	。 作口肥一次 施 入	

注: 0 为标准处理

通用旋转组合设计",其数学模型为:

$$\hat{\mathbf{y}} = \mathbf{b_0} + \Sigma \mathbf{b_i} \mathbf{x_i} + \Sigma \mathbf{b_i} \mathbf{x_i} \mathbf{x_i} + \Sigma \mathbf{b_i} \mathbf{x_i} \mathbf{x_i}^2$$
 (1)

试验设计结构矩阵如表 2,供试品种为吉林13号,灌水方式为滴灌。试验地为黑钙土,平 坦肥沃。试验结果见表 2。

二、计算结果与检验

根据表 2 内的试验结果,按照下列公式分别计算出常数项、一次项、交互作用项、二 次项的回归系数

$$b_{\alpha} = K \sum_{\alpha=1}^{31} y_{\alpha} + E \sum_{i=1}^{4} \left(\sum_{\alpha=1}^{31} X_{i\alpha}^{2} y_{\alpha} \right)$$

틍	X•	* X1	X2	X's	X4	y (个/m²)	ý (个/m²)
1	1	1	1	1	1	790	771
2	1	1	1	1	-1	75 2	758
3	1	1	1	- 1	1	841	826
4	1	1	1	-1	- 1	765	763
5	1	1	-1	1	1	645	644
6	1	1	- 1	1	- 1	5 86	605
7	1	1	- 1	- 1	1	802	738
8	1	1	<u> </u>	- 1	t	634	647
9	1	– 1	1 "	1	1	837	796
10	1	- 1	1	1	- 1	772	789
11	1	- 1	1	- 1	1	858	792
12	1	- 1	1	- 1	- I	759	733
13	1	- 1	- 1	1	1	718	633
14	1	- 1	– 1	1	- 1	651	668
15	1	- 1	<u> </u>	- 1	1	740	70 8
18	1	- 1	- 1	-1	- 1	649	621
17	1	2	. 0	0	0	722	713
18	1	- 2	Ü	0	0	6 34	712
19	1	0	2	0	0	897	930
20	1	0	- 2	0	٥	654	699
21	1	0	0	. 2	0	720	713
22	1	9	0 .	- 2	D	685	756
23	1	0	0	0	2	562	664
24	1	0	0	0	- 2	539	5 66
25	1	0	0	0	0	771	711
26	1	0	0	0	! 0	715	711
27	1	0	0	0	0	73ô	711
28	1	0	0	0	0	763	711
29	1	0	0	0	0	749	711
30	1	0	0	0	D	6 4 7	711
31	1	0	0	0	0	600	711

$$b_i = e^{-1} \cdot \sum_{\alpha = 1}^{31} X_{i\alpha} y_{\alpha}$$

$$bij = m_c^{-1} \cdot \sum_{\alpha=1}^{31} X_{i\alpha} X_{j\alpha} y_{\alpha}$$

bii =
$$(F-G)$$
 $\sum_{\alpha=1}^{31} X_{i\alpha}^2 y_{\alpha} + G \sum_{i=1}^{4} (\sum_{\alpha=1}^{31} X_{i\alpha}^2 y_{\alpha}) + E \sum_{\alpha=1}^{31} y_{\alpha}$

式中K=0.1428,E=-0.0357,e=24,mc=16,F=0.035,G=0.0037,它们随试验

因素个数而变化。于是得出大豆每平方米结实荚数与各因素间的数学关系式为:

$$y = 711 \cdot 286 + 0 \cdot 292x_1 + 59 \cdot 792x_2 - 9 \cdot 458x_3 + 24 \cdot 542x_4 + 0 \cdot 813x_1x_2 - 15 \cdot 063x_1x_3 + 1 \cdot 188x_1x_4 + 9 \cdot 563x_2x_3 - 6 \cdot 688x_2x_4 - 12 \cdot 813x_3x_4 + 0 \cdot 274X_1^2 + 24 \cdot 688x_2^2 + 6 \cdot 409x_3^2 - 24 \cdot 140x_4^2$$
(2)

对该回归式进行显著性检验,F值为3_•096, 达 5 %显著水准, 复相关系数为0_•8546。可见,该方程式反映了大豆结实荚数与水分、施氮量、施磷量、密度间的综合关系。如将各因素的不同水平值代入(2)中,计算出各处理组合的计算值列于表 2 的最后一栏内。显而易见,计算值与实际值基本一致,其误差为±54_•5,即为7_•6%。

三、各因素最佳组合的确定

大豆结实荚数受水分、肥料、密度等因素的综合影响。对于大豆结实荚数最有利的栽培措施是以较少的投入,获得较大的效益。

对式(2)进行数学分析与计算,经整理得出下列联立方程组:

$$0.548x_1 + 0.813x_2 - 15.063x_3 + 1.188x_4 = -0.292$$

 $0.813x_1 + 49.376x_2 + 9.563x_3 - 6.688x_4 = -59.792$
 $-15.063x_1 + 9.563x_2 + 12.818x_3 - 12.813x_4 = 9.458$
 $1.188x_1 - 6.688x_2 - 12.813x_3 - 48.280x_4 = -24.542$

解此方程组,则得:

$$x_i = -1.906$$
, $x_2 = -1.083$, $x_3 = -0.058$, $x_4 = 0.627$.

若将此xi 值代入(2)式中,则得 y = 687。 这就 是各因素最有利的栽培措施的水平值及 其每平方米结实荚数。换句话说,生育期间外界补充水分(包括自然降雨加人工灌溉)为 500~550毫米,施纯氮量为2.3公斤/亩,施磷量为4.9公斤/亩,密度为1.5~1.8万株/亩。同时,对于每平方米结实荚数来说,其氮与磷之比以 1:2 为宜。它比一般生产田每平方米结实荚数 602荚增加11.4%左右。可见,在水、 肥较 少投入量情况下,获得较高的产出,这是经济可行的方案。

从 试 验 结果与方程式 (2)还可以看出,结实 荚 数最多 时的各因素组合水平为 xi = 0,即各因素均为标准水平。也就是,生育期间外界补充水分 (包括降雨与灌溉)550~600毫米,施氮量 5 公斤/亩,施 磷 量 5 公斤/亩,密度 为1.5万株/亩。显 而 易见,再增加施氮量 1 倍以上,水量增加10%以上,结 实 荚数 达711个,即每平方米增加23个荚。仅比上面组合方案增加 3 %左右,这种水肥高投入低产出的结果是不经济的。

(一)根据"四因素二次通用旋转组合设计"试验结果,计算得出大豆每平方米结实 英数与水分、施氮量、施磷量和密度间的数学模型为:

$$y = 711_{\bullet}286 + 0_{\bullet}292x_{1} + 59_{\bullet}792x_{2} - 9_{\bullet}458x_{3} + 24_{\bullet}542x_{4} + 0_{\bullet}813x_{1}x_{2} - 15_{\bullet}063x_{1}x_{3} + 1_{\bullet}188x_{1}x_{4} + 9_{\bullet}563x_{2}x_{3} - 6_{\bullet}688x_{2}x_{4} - 12_{\bullet}813x_{3}x_{4} + 0_{\bullet}274x_{1}^{2} + 24_{\bullet}688x_{2}^{2} + 6_{\bullet}409x_{3}^{2} - 24_{\bullet}14x_{4}^{2}$$

该回归方程式达 5 %显著水准,复相关系数为0.8546,方程式误差为54.5英 $/m^2$, 即为7.6%。

(二)最佳因素组合为生育期间外界补充水分 (包括降雨与灌溉) 500~550毫米左右,施纯氮量2•3公斤/亩,施磷量4•85公斤/亩,密度为1•5~1•8万株/亩。其施用氮与磷的比例以1:2为宜。按照上述栽培指标,每平方米结实荚数可增加11•4%。

参考文献

- (1) 丁喬泉等: 大豆滴灌技术研究——大豆高产栽培数学模型,《中国油料》, 1983年, 第3期。 31~35页。
 - (2) 丁希泉编著:《农业应用回归设计》, 吉林科学技术出版社, 1986年, 123~151页。

玉米干燥方法探讨

我省近几年来玉米连年获得丰收,但给储存带来了很大困难。储存要求安全水分在14.5%以下(国际标准),而收购的玉米含水量多在20%以上,有的高达30%。因为玉米含水分过高容易产生黄曲霉菌,不仅人不能食用,而且也不能饲用。所以我们必须解决好储存问题。

1984年,我省玉米获得大丰收,由于储存困难,不得不采用"民代国储"的办法解决。但这种整棒储存办法,水分降的慢,且 损失太大,不宜普遍采用。目前主要采取人工晾晒和粮库集中烘干的办法。至于塔内强制通风干燥办法实践证明是行不通的,因为耗电量 太大,且冬春季气温低,不易降低水分。人工晾晒是传统办法。由于过去产粮少,所以晾晒量也少,矛盾并不突出。但1987年矛盾暴露了,为了晾晒玉米一项,全省曾动员10万人,占用了五六百个中小学操场,200多条公路,10个机场。公主岭市今春玉米降水任务70万吨,其中人工晾晒降水50余万吨。为完成这一任务,动用劳力15万个,全市机关停止办公、学校停课,由乡镇拿钱补贴。根据范家屯粮库核算,院内晾晒费用每吨大约6元,院外晾晒占地多,用工多,损耗大,每吨需要19元,也不宜采用。粮库集中烘干的办法是可行的。该方法是建造砖砌蒸汽排管加热室。蒸汽送入排管内,需要降水的玉米由上而下缓缓经过各室,这样,玉米连续经过五六次加热烘干后可达到安全水分要求,然后再经降温即可。这种加热装置整套设施需要250万元,每天可烘干玉米500吨。蒸汽烘干装置耗热量和玉米含水量关系很大。根据计算,玉米含水量25%比含水18%的耗热量相差近一倍。烘干含水量为20%的玉米,如果锅炉效率为60%,热量为23。84兆焦/千克标准煤,则每干燥100吨玉米,用煤量为2.5吨,而现在由于煤质和烧煤皮术等因素,一般以每100吨玉米用煤4吨计,用煤量出入很大。如要烘干的玉米含水低,蒸汽烘干装置的处理能力可以增大,费用也基本成比例下降。根据上述调查情况,对我省玉米储存及干燥降水问题,建议采取以下措施。

第一、降低人库 玉米水分。在可能条件下,尽量降低入库玉米水分。应采用经济杠杆调节手段,入库粮含水量以18%为准,每降 2 个水分加价 5 厘,高水分粮应降等减量。

第二、减少需储 存 与降水 玉米量。 其办法 是实行死一块、活一块的政策,由各地区承包定购量,并按分配数字, 允许地区与外 地进 行商 品流通,新收 购的玉米能调出的尽早调出。实际上由于运力限制,出省量不会太多。

第三、采用蒸汽烘干办法,辅以晾晒。目前蒸汽烘干是较经济的办法,省已决定建一大批, 建成后各粮食基地县干燥能力可达22.5亿公斤,基本上能满足需要。在烘干的同时,各粮库现有的水泥晒 台要加以利用。

第四、建议拨款研究、建造新的烘干设备。当前采用的蒸汽烘干装置并未脱离原始形式,煤电消耗大,能量利用不合理,建议省有关部门应拨出一定经费,研究建造新的烘干设备。此外,蒸汽烘干装置利用率低,一年仅利用三四个月,如何进行综合利用,还是一个值得探讨的课题。

何润华 (青林省政府调研室)