高粱杂种一代及其亲本子粒蛋白质、赖氨酸、单宁含量与千粒重的遗传研究

田文勋 白宝璋 赵景阳 张德忠*赵 义** 刘美良*** 王 勇***

(吉林农业大学, 长春 130118)

提 要 本文分析了 12 个杂交组合的 F₁ 与其亲本子粒的蛋白质, 赖氨酸和单宁含量及其千粒重。结果表明,在 F₁ 代子粒中,蛋白质含量的超亲组合占 41.6%, 赖氨酸含量超亲组合占 16.7%,千粒重的超亲组合占 66.7%。F₁ 单宁含量介于双亲之间,无超亲现象。F₁ 单宁含量受高亲值控制,双亲中若有一方单宁含量高,便会导致 F₁ 单宁含量的提高。对品质性状进行杂种优势分析,发现以高亲值(HP)比较时,F₁ 的杂种优势全为负值。表明这些性状虽然在某些组合中有优势,但在多数组合中经常出现的却是劣势而不是优势。

相关分析表明,F₁单宁含量与父本呈正相关,r=0.659,p<0.05,达显著标准。与母本呈弱负相关,未达显著标准。F₁赖氨酸含量与其父、母本及F₁蛋白质含量与其父、母本呈极弱负或正相关,未达显著标准,但父、母本子粒中的蛋白质与赖氨酸间却呈极显著正相关。

关键词 高梁;杂交组合;蛋白质;赖氨酸;单宁;F1

高粱是北方主要作物之一,子粒既可食用,又可用来酿酒。目前生产上推广的杂交高粱虽然产量较高,但品质较差,蛋白质、赖氨酸含量低而单宁含量高。这不但影响食用的口味,而且降低了营养价值,影响了人、畜对养料的吸收利用。据报道,用高单宁含量子粒喂鸡,可造成鸡的死亡。因此,培育高蛋白质、高赖氨酸、低单宁含量的杂交种,是高粱品质育种的一个重要目标。本研究测定了12个杂交组合的F,及其亲本子粒的品质性状,旨在探讨它们之间的遗传表现及相关性,为培育优质、高产的杂交高粱提供理论依据。

1 材料与方法

供试材料为 12 个杂交组合, F_1 12 份,亲本 17 份,同时种于校内农业科学实验站,秋季子粒成熟后收获。种子经自然风干,品质分析前用手工去掉杂质。蛋白质含量用 MRK一定氮仪测定,赖氨酸含量用茚三酮法测定,单宁含量用 Folin—Denis 法测定¹¹。供试的杂交组合为:A. 72-513×大粒 2 号;B. 72-513×7616-533;C. 72-513×红恢 213;D. 恢 80×铁 208;E. 恢 80×7505-1211;F. 恢 80×恢 093;G. 黑恢 1 号×7505-1211;H. 128×大粒 2 号;I. 护 22×黑恢 77;J. 马丁×跃 41;K. 2731A×2314;L. 2731A×7313 等 12 个组合。

- ①平均优势(%)= $\frac{F_1-双亲平均值}{双亲平均值} \times 100$
- ②超亲优势(%)= $\frac{F_1-较好亲本}{较好亲本} \times 100$
- ③杂种优势 $H = \frac{F P}{P}$

收稿日期 1995-03-30

^{*} 洮北区德顺乡农业技术推广站; * * 洮南市家茂乡农业技术推广站; * * * 抚松县农业技术推广站。

2 结果和分析

2.1 F₁与亲本子粒蛋白质含量的遗传表现

由表 1 可见, F₁ 子粒蛋白质含量,在所分析的 12 个杂交组合中,有 5 个组合(A、B、C、E 和 J)高于双亲(超亲优势为正值),占总数的 41.6%,有 3 个组合(G、I 和 L)低于双亲(超亲优势为负值),占 25%,有 4 个组合(D、F、H 和 K)介于双亲之间,占 33.4%,虽然超亲优势为负值,但仍有 2 个组合(D、H)的平均优势为正值。由此可见,蛋白质遗传具有一定的杂种优势。用蛋白质。由此可见,蛋白质含量对 F₁ 的影响较复杂,既有随父本蛋白质含量增加而增加的组合(A、B、C),又有相反变化的组合(D、E 和 F),表明用父本蛋白质含量不能预测 F₁ 的蛋白质含量。

组合 母本 父本 F ₁ 平均优势 超亲优势 A 11.85 11.37 12.05 3.79 1.69 B 11.85 12.14 12.34 2.88 1.65 C 11.85 12.56 13.35 9.38 6.29 D 11.00 12.72 12.49 5.31 -1.81 E 11.00 12.37 12.59 7.74 1.78 F 11.00 14.79 11.35 -11.98 -23.26 G 13.45 12.37 11.89 -7.90 -11.59 H 12.78 11.37 12.44 3.02 -2.66 I 11.79 12.77 10.44 -14.98 -18.25 J 11.28 11.02 11.86 6.37 5.14 K 13.79 10.97 12.00 -3.07 -12.98 L 13.79 11.40 10.92 -13.70 -20.81	表	1 F,	与亲本	k 子粒·	蛋白质含	± %
B 11. 85 12. 14 12. 34 2. 88 1. 65 C 11. 85 12. 56 13. 35 9. 38 6. 29 D 11. 00 12. 72 12. 49 5. 31 -1. 81 E 11. 00 12. 37 12. 59 7. 74 1. 78 F 11. 00 14. 79 11. 35 -11. 98 -23. 26 G 13. 45 12. 37 11. 89 -7. 90 -11. 59 H 12. 78 11. 37 12. 44 3. 02 -2. 66 I 11. 79 12. 77 10. 44 -14. 98 -18. 25 J 11. 28 11. 02 11. 86 6. 37 5. 14 K 13. 79 10. 97 12. 00 -3. 07 -12. 98	组合	母本	父本	F ₁	平均优势	超亲优势
C 11.85 12.56 13.35 9.38 6.29 D 11.00 12.72 12.49 5.31 -1.81 E 11.00 12.37 12.59 7.74 1.78 F 11.00 14.79 11.35 -11.98 -23.26 G 13.45 12.37 11.89 -7.90 -11.59 H 12.78 11.37 12.44 3.02 -2.66 I 11.79 12.77 10.44 -14.98 -18.25 J 11.28 11.02 11.86 6.37 5.14 K 13.79 10.97 12.00 -3.07 -12.98	Α	11.85	11. 37	12. 05	3.79	1. 69
D 11.00 12.72 12.49 5.31 -1.81 E 11.00 12.37 12.59 7.74 1.78 F 11.00 14.79 11.35 -11.98 -23.26 G 13.45 12.37 11.89 -7.90 -11.59 H 12.78 11.37 12.44 3.02 -2.66 I 11.79 12.77 10.44 -14.98 -18.25 J 11.28 11.02 11.86 6.37 5.14 K 13.79 10.97 12.00 -3.07 -12.98	В	11.85	12. 14	12. 34	2.88	1. 65
E 11.00 12.37 12.59 7.74 1.78 F 11.00 14.79 11.35 -11.98 -23.26 G 13.45 12.37 11.89 -7.90 -11.59 H 12.78 11.37 12.44 3.02 -2.66 I 11.79 12.77 10.44 -14.98 -18.25 J 11.28 11.02 11.86 6.37 5.14 K 13.79 10.97 12.00 -3.07 -12.98	С	11.85	12.56	13. 35	9.38	6. 29
F 11. 00 14. 79 11. 35 -11. 98 -23. 26 G 13. 45 12. 37 11. 89 -7. 90 -11. 59 H 12. 78 11. 37 12. 44 3. 02 -2. 66 I 11. 79 12. 77 10. 44 -14. 98 -18. 25 J 11. 28 11. 02 11. 86 6. 37 5. 14 K 13. 79 10. 97 12. 00 -3. 07 -12. 98	D	11.00	12. 72	12. 49	5. 31	-1.81
G 13.45 12.37 11.89 -7.90 -11.59 H 12.78 11.37 12.44 3.02 -2.66 I 11.79 12.77 10.44 -14.98 -18.25 J 11.28 11.02 11.86 6.37 5.14 K 13.79 10.97 12.00 -3.07 -12.98	E	11.00	12. 37	12.59	7.74	1.78
H 12.78 11.37 12.44 3.02 -2.66 I 11.79 12.77 10.44 -14.98 -18.25 J 11.28 11.02 11.86 6.37 5.14 K 13.79 10.97 12.00 -3.07 -12.98	F	11.00	14.79	11. 35	-11.98	-23.26
I 11.79 12.77 10.44 -14.98 -18.25 J 11.28 11.02 11.86 6.37 5.14 K 13.79 10.97 12.00 -3.07 -12.98	G	13. 45	12. 37	11.89	-7.9 0	-11.59
J 11. 28 11. 02 11. 86 6. 37 5. 14 K 13. 79 10. 97 12. 00 -3. 07 -12. 98	Н	12. 78	11. 37	12. 44	3.02	-2.66
K 13.79 10.97 12.00 -3.07 -12.98	I	11. 79	12.77	10.44	-14.98	-18.25
	J	11. 28	11.02	11.86	6. 37	5.14
L 13.79 11.40 10.92 -13.70 -20.81	K	13. 79	10. 97	12.00	-3.07	-12.98
	L	13. 79	11.40	10. 92	-13.70	-20.81

有关高粱蛋白质的遗传研究,文献报道不一,赛佩尔的研究认为,中蛋白品系间杂交,F₁高于亲本,而高蛋白或低蛋白品系间杂交,F₁介于双亲之间或低于亲本。辽宁农科院 1977年分析了一批高粱杂交组合,未发现有超亲组合⁽²⁾。中科院遗传所 402 组研究认为,多数组合 F₁蛋白质含量介于双亲之间,少数组合具有明显超亲现象⁽³⁾。我们分析的结果与中科院遗传所 402 组研究结果相似。

2.2 F₁与亲本子粒赖氨酸含量的遗传表现

在所分析的高粱杂交组合中,仅有2个组合(E、H),F₁ 赖氨酸含量高于双亲,超亲优势为正值,占总组合的16.7%。其它组合的F₁ 赖氨酸含量均低于双亲或介于双亲之间(表2)。表明赖氨酸含量的遗传,虽然有杂种优势,但机率很小。中科院遗传研究所研究认为,低含量赖氨酸品系杂交有超亲现象,高赖氨酸品系杂交无明显杂种优势¹³。由于我们分析的组合较少,故未能看出此规律。

2.3 F₁与亲本子粒单宁含量的遗传表现

从表 3 中可以看出、F₁ 的单宁含量介于双亲之间,无超亲现象。从父、母本单宁含量对 F₁ 的影响看,以父本单宁含量的影响更大些。用不同单宁含量的父本与同一母本

表 2 F₁ 与亲本子粒的赖氨酸含量 %

组合	母本	父本	F ₁	平均优势	超亲优势
Α	0. 38	0.28	0. 22	-33.33	-42.10
В	0.38	0.29	0.38	13. 43	0
С	0. 38	0.34	0. 20	-44.44	-47.37
D	0. 28	0.28	0. 23	-17.86	—17.86
E	0. 28	0.32	0.33	10.00	3. 13
F	0. 28	0.37	0. 27	-16.92	-27.03
G	0.42	0.32	0.28	-24.30	33. 30
Н	0.31	0.28	0.34	15. 25	9.68
Ĭ	0. 32	0. 36	0.31	-8.82	-13.89
J	0. 31	0.21	0. 21	-19.23	-32.26
K	0. 41	0.34	0.32	—14.67	-21.95
L	0.41	0. 27	0.26	— 23. 53	-36.59

H%

杂交,其 F_1 单宁含量呈现出随父本单宁含量的增加而增加的趋势(如 D、F、E 组合与 L、K 及 A、C、B 组合)。用同一父本与单宁含量不同母本杂交, F_1 呈现出随母本单宁含量增加而增加(A、H、E、G 组合)。这表明 F_1 单宁含量受双亲控制,尤其受高亲值控制。在双亲中,若有一方单宁含量高均会导致 F_1 单宁含量的提高。因此,要培育低单宁含量的杂种一代,必须选用双亲单宁含量均低的亲本,否则,便会导致失败。

表 3 F: 与亲本子粒的单宁含量 %

2.4 F₁与亲本子粒千粒重的遗传表现

组合	母本	父本	F ₁	平均优势	超亲优势		表 4	F、与	亲本子	粒的干粒	Ž I g
Α	0.42	0.53	0. 52	9. 47	— 1. 89	组合	母本	父本	F۱	平均优势	超亲优势
В	0.42	1.50	0. 65	-32.29	-56.67	A	19. 46	27. 42	27. 77	18. 47	1. 28
c	0.42	1.00	0.85	19.72	-15.00	В	19.46	20. 92	30. 30	50.07	44. 83
D	0.43	0.06	0.30	22. 44	-30.23	С	19. 46	27. 02	30. 30	30. 38	12. 14
E	0.43	0. 83	0.45	-28.57	-45.78	D	27. 02	19. 92	32. 05	36.56	18. 61
F	0.43	0.48	0.43	-5.49	-10.42	E	27. 02	24. 63	30. 67	18.73	13. 50
G	0. 55	0. 83	0. 65	-5.79	-21.69	F	27. 02	26. 17	30.86	16. 03	14. 21
						G	27. 47	24.63	19.53	-25.03	-28.90
H	1. 20	0.53	0.55	 36. 42	-54.17	Н	22. 62	27. 42	31. 25	24. 90	13. 97
I	0.98	0. 75	0.70	-19.08	 28.57	I	25.12	21. 73	26. 31	12. 32	4.74
J	0.09	1.00	0. 98	79. 82	-20.00	J	23. 14	20.00	20. 40	-5.42	—11.84
K	0.45	1.05	0.80	6. 67	-23.80	K	26. 59	20. 92	23. 80	0.18	-10.49
L	0. 45	0. 90	0. 70	3.71	-22.22	L	26. 59	24.50	24. 36	-4.63	-8.39

从表 4 可见,杂种高粱 F_1 代子粒干粒重的超亲优势为正值的组合有 8 个,平均优势为正值的有 9 个,分别占总组合数的 66.7%和 75%。即表明干粒重的超亲组合出现的机率较大,故杂交育种时容易获得到干粒重高的 F_1 代。

2.5 品质杂种优势分析

蛋白质、赖氨酸与单宁是高粱子粒的重要品质性状。从表 1~表 3 中的超亲优势值看,F₁ 蛋白质含量在一些组合中呈现出明显的杂种优势(超亲优势为正值),F₁ 赖氨酸含量在少数组合中也有杂种优势,而单宁含量在所有杂交组合中均未出现杂种优势(超亲优势为负值)。将 12 个杂交组合进行综合统计,计算杂种优势值(H),结果列入表 5 中。从表 5 与图 1中可见,若以高亲值比较,F₁ 杂种优势全为负值:蛋白质平均负 13.2%,赖氨酸平均负32.2%,单宁平均负58%,若以中亲值比较,除了单宁为正值外,蛋白质与赖氨酸仍为负值。这说明高粱的这些品质性状,在F₁ 代中经常出现的是劣势而非优势,但并不排出在少数组合中有优势存在。张文毅统计了30多个杂交组合,认为蛋白质、赖氨酸在F₁ 代中经常表现出负的优势⁽⁵⁾。这与我们的结果是一致的。

表 5	12	•	ク ъ	玆	60	_	~~	品	EF.	オಒ	种	412	势	
- ਕਲ ਹ	12	个	516	×	SH.	7	H vi	00	m	512	744	ъ.	47	

#F Jb			P						Н%		
在 状	-	\$	MP	HP	SP	- F ₁	MP	HP	SP		\$
蛋白质	12. 120	12. 150	12.140	13. 79	10. 97	11. 976	-1.4	-13.2	9. 2	-1.2	-1.5
赖氨酸	0.346	0.305	0. 325	0.41	0. 21	0. 278	-14.5	-32.2	32.4	-19.7	-8.9
单宁	0.523	0. 788	0.567	1.50	0.06	0. 630	11. 1	-58.0	950.0	20.5	-20.1

注:SP:低亲值;MP:中亲值;HP:高亲值

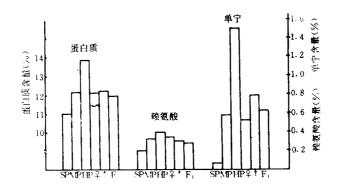


图 1 12 个组合 Fi 与其亲本品质性状比较(平均值)

2.6 相关分析

品质性状间的相关系数列入表 6 中。由表中可见, F₁ 单宁与父本单宁的 r = 0.659°, 达 5%的显著水准, 与母本的 r = -0.2240, 为弱负相关。F₁ 蛋白质与父、母本蛋白质呈弱负相关, 不显著, F₁ 赖氨酸与父、母本间赖氨酸分别呈正或负相关, 也不显著。F₁ 子粒中的蛋白质与赖氨酸虽呈正相关, 但未达显著标准, 而父、母本子粒中的蛋白质与赖氨酸间的相关却达显著标准, 相关系数 r 值分别为 0.6512°和 0.7947°。

表 6 蛋白质、赖氨酸、单宁间的相关性

性	状	变数	r 值	显著标准			
it	. 48.		r (H	5% 1%			
F ₁ 蛋白质一处	本蛋白质	12	-0.1270	0.5760 0.7079			
t	非本蛋白质	12	- 0. 2257	0.5760 0.7079			
F: 赖氨酸一氮	(本赖氨酸	1 2	0. 3734	0.5760 0.7079			
— 1	日本赖氨酸	12	-0.170 2	0.5760 0.7079			
F ₁ 单宁一父本	5单宁	12	0. 6590	0.5760 0.7079			
一母 本	ķ单宁	12	- 0. 2240	0.5760 0.7079			
F1 蛋白质一F	1 赖氨酸	12	0.1240	0.5760 0.7079			
F,蛋白质-F	1 单宁	12	-0.0662	0.5750 0.7079			
F1 赖氨酸一F	1 单宁	12	-0.1642	0.576c 7/479			
父本蛋白质一	父本赖氨酸	10	0.6512	0.6319 0.7646			
母本蛋白质一	母本赖氨酸	7	0. 7947	0.7545 0.8745			

3 小 结

- 3.1 F₁ 子粒蛋白质含量在一些组合中呈现出明显杂种优势,超亲组合占所分析组合的41.6%。这为选育高蛋白质含量的高粱杂交种提供了较大机会。
- 3.2 F₁ 子粒赖氨酸含量的超亲组合较少,在本研究中,仅占总组合的 16.7%。
- 3.3 F₁ 单宁含量介于双亲之间,无超亲现象,其含量受双亲中高值亲本控制。杂交育种时 若双亲中有一方单宁含量高,便会导致 F₁ 单宁含量的提高。
- 3.4 F₁ 子粒的干粒重在多数组合中具有明显的杂种优势,超亲组合占 66.7%。
- 3.5 杂种优势分析结果表明,蛋白质与赖氨酸性状,虽然在某些杂交组合中可出现杂种优势,但从总体上看,它们在Fi代中经常出现的是劣势而非优势。因此,在培育高蛋白、高赖氨酸的杂交种时,需要选用双亲含量均高的品系杂交。
- 3.6 相关分析表明,除了 F_1 与其父本子粒单宁含量以及父、母本子粒中的蛋白质与赖氨酸间的相关,达显著正相关外,其它品质性状间的相关或呈正或呈负弱相关,均未达显著标准。

参 考 文 献

- 1 吉林农大农学系植物生理生化室. 植物生理学实验指导,1986,110-111
- 2 辽宁农科院高粱组、杂交高粱的品质育种、遗传与育种,1978,1:P12
- 3 中国科学院 402 组. 高粱亲本及其杂种一代蛋白质含量的遗传研究. 遗传与育种,1976,(6),11-13
- 4 中国科学院 402 组. 杂交高粱赖氨酸性状的遗传研究. 遗传与育种,1977,2:10-11
- 5 张文毅. 高粱品质性状的遗传研究. 辽宁农业科学,1980,2:37-42
- 6 田文勋等. 高架杂交亲本及其杂种一代单宁含量、农艺性状的遗传研究. 四平农业科技,1993,6:7-11

STUDY ON GENETICS OF PROTEIN, LYSINE AND TANNIN CONTENT AND WEIGHT OF THOUSAND SEEDS IN GRAINS OF F₁ AND THEIR PARENTAL PAIR OF SORGHUM HYBRID

TIAN Wenxun et al.

(Jilin Agricultural University Chang Chun 130118)

Abstract: This paper had analyzed protein, lysine and tannin content and weight of thousand seeds in grains of F_1 and their parental pairs in twelve sorghum hybridized combinations. The results showed that superparental combination of protein and lysine content and weight of thousand seeds of F_1 grains were 41.6%, 16.7% and 66.7% of all combinations respectively. F_1 tannin content is in among parental pair, had not superparental combination. F_1 tannin content is controlled by high value parent plant. If tannin content of any parent in parental pair is high, The F_1 tannin content will be increased. The results of analysis hybrid vigor showed that F_1 hybrid vigor is all negative value, when high parent value as control. This is showed that these quality character although had hybrid vigor in F_1 grain of some combinations. But the vigor depression appeared in many hybridized combinations.

Correlative analysis showed that grain tannin content between F_1 and father plant has significant positive correlation (r=0.659). The tannin content between F_1 and mother plant; Lysine content between F_1 and father or mother plant; Protein content between F_1 and father or mother plant appeared week positive or negative correlation. The protein and lysine content of seed in parental pair plant has singnificant positive correlation.

Key Word: Sorghum, Hybridized combination, Protein, Lysine, Tannin.