文章编号:1003-8701(1999)04-0028-04

紧凑型玉米栽培密度、施肥量与产量的关系分析

倪玉春,王提江,高会林

(通化农科院玉米所,海龙 135007)

摘 要:采用紧凑型玉米品种,通过不同栽培密度、不同施肥量的栽培试验,得出最佳的栽培方法。试验表明,紧凑型玉米的适宜栽培密度为 $5.5~ \pi^{-6}$ 万株/ m^2 , 施 N 量为 200^{-225} kg/ m^2 ,同时配合施磷、钾、锌肥,效果更佳。

关键词: 玉米; 紧凑型; 栽培密度; 施肥量; 产量

中图分类号:S 513.048; S 513.062

文献标识码:A

近几年,紧凑型玉米在我省的栽培面积逐渐扩大,使我省玉米产量有了大幅度的提高。但由于各地区的栽培密度和施肥量配合不适当,没能充分发挥品种的增产优势。因此,我们对紧凑型玉米的栽培密度、施肥量进行了比较分析。

1 试验方法

1997 年在院内试验场种植,试验地为河质壤土,前茬大豆。供试玉米品种为掖单 51。在磷、钾肥固定的条件下(P_2O_5 100 kg/hm², K_2O 100 kg/hm²),进行不同密度、不同施肥的产量比较试验。试验采用二裂区设计,3 次重复,小区面积为 10 m²,主区为栽培密度(A),4 个处理水平分别为 A_1 50 株/10 m²、 A_2 55 株/10 m²、 A_3 60 株/10 m² 和 A_4 65 株/10 m²;副区为施 N 量(B),5 个施 N 处理水平分别为 B_1 0.15 kg/10 m²、 B_2 0.175 kg/10 m²、 B_3 0.20 kg/10 m²、 B_4 0.225 kg/10 m² 和 B_5 0.25 kg/10 m²。 田间排列如图 1。

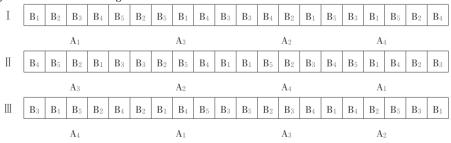


图 1 不同密度、不同施 N 量产量比较田间排列顺序

2 结果与分析

2.1 处理与区组、主区与副区分析

将试验资料整理成区组与处理两向表和资料 A 与资料 B 两项表, 见表 1、表 2。

夷 1	不同宓度"	下的不同族 服	甲水平冬区:	组间的比较分析
1X ±	们凹面皮	いほりついり か込り	レかてロロ	江川リリンレルメノノリリ

 $kg/10 m^2$

主区(A)			区 组		TD.	TD.
	副区(B)	Ι	II	\blacksquare	- T _t	T_A
\mathbf{A}_1	B ₁	7.5	7.4	7.5	22.4	
	\mathbf{B}_2	7.8	7.8	7.7	23.3	
	\mathbf{B}_3	8.8	8.4	8.9	26.1	
	\mathbf{B}_4	8.9	8.8	8.5	26.2	
	\mathbf{B}_5	8.3	8.6	8.6	25.5	
	Tm	41.3	41.0	41.2		123.5
\mathbf{A}_2	B_1	7.3	7.4	7.2	21.9	
	\mathbf{B}_2	7.7	7.6	7.8	23.1	
	B 3	9.8	10.1	10.0	29.9	
	\mathbf{B}_4	9.8	9.9	10.1	29.8	
	\mathbf{B}_5	8.9	9.2	9.0	27.1	
	Tm	43.5	44.2	44.1		131.8
\mathbf{A}_3	\mathbf{B}_1	7.4	7.6	7.5	22.5	
	\mathbf{B}_2	7.8	7.9	7.9	23.6	
	\mathbf{B}_3	10.2	10.1	10.4	30.7	
	\mathbf{B}_4	10.3	10.2	10.4	30.9	
	\mathbf{B}_5	9.7	9.5	9.8	29.0	
	Tm	45.4	45.3	46.0		136.7
\mathbf{A}_4	\mathbf{B}_1	7.5	7.3	7.6	22.4	
	\mathbf{B}_2	8.0	7.7	7.7	23.4	
	\mathbf{B}_3	9.3	9.4	9.1	27.8	
	\mathbf{B}_4	9.4	9.3	9.2	27.9	
	B 5	8.8	8.9	8.7	26.4	
	Tm	43.0	42.6	42.3		127.9
$T_{\rm r}$		173.2	173.1	173.6		T = 519.

表 2 不同密度处理与不同施肥量间的产量水平

 $kg/10 m^2$

密度			施	巴量		
笛 及	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_4	\mathbf{B}_5	T_A
\mathbf{A}_1	22.4	23.3	26.1	26.2	25.5	123.5
\mathbf{A}_2	21.9	23.1	29.9	29.8	27.1	131.8
\mathbf{A}_3	22.5	23.6	30.7	30.9	29.0	136.7
\mathbf{A}_4	22.4	23.4	27.8	27.9	26.4	127.9
T_{B}	89.2	93.4	114.5	114.8	108.0	T = 519.9

2.2 方差分析和 F 测验

将上述两表的统计数据进行方差分析和F测验,分析结果如下。

表 3 方差分析和 F 测验

变异来源		DF	SS	MS	F	$\mathbf{F}_{0.05}$	$F_{0.01}$	
主	区组	2	0.007 0	0.003 5	0.126 3<1	5.14	10.92	
	A	3	6.319 2	2.106 4	75.988 5 * *	4.76	9.78	
X	Ea	6	0.166 3	0.027 7				
	总变异	11	6.492 5					
副	В	4	47.857 3	11.964 3	598.215 * *	2.67	3.97	
	$_{ m A} \times _{ m B}$	12	4.646 6	0.387 2	19.36**	2.07	2.80	
X	Eb	32	0.64	0.02				
	总变异	59	59.636 5					

由表 3 可知,各区组间无差异,而各栽培密度、各施 N 量间以及栽培密度与施 N 量间的 互作均有极显著差异。

2.2.1 不同栽培密度间的产量比较

由 rb=3×5=15, 故 X_{A_1} =123.5/15=8.23, X_{A_2} =131.8/15=8.79, X_{A_3} =136.7/15=1.77.0/15=9.52

$$9.11, \mathbf{X}_{\mathbf{A}_4} = 127.9/15 = 8.53$$

$$S_{X} = \sqrt{\frac{MSEa}{rb}} = \sqrt{\frac{0.02772}{3 \times 5}} = 0.043$$

表 4 不同栽培密度间 SSR 和 LSR 分析

表 5 不同密度下的产量差异	7
----------------	---

K	2	3	4	क्ट के	产量_	显著水平	
				密度	$(kg/10m^2)$	0.05	0.01
SSR _{0.05}	3.64	3.58	3.64	\mathbf{A}_3	9.11	a	A
$SSR_{0.01}$	5.24	5.51	5.65	\mathbf{A}_2	8.79	b	В
LSR _{0.05}	0.149	0.154	0.157	\mathbf{A}_4	8.53	c	C
LSR _{0.01}	0.225	0.237	0.243	\mathbf{A}_1	8.23	d	D

 $LSR_x = S_x \times SSR_x$, DF = 6

从表5看出,各种栽培密度间的产量差异均达到了极显著水平。

2.2.2 不同施 N 量间的产量比较

$$X_{B_3} = 114.5/12 = 9.542, X_{B_4} = 114.8/12 = 9.567, X_{B_5} = 108/12 = 9.000$$

$$S_{X} = \sqrt{\frac{MSEb}{ra}} = \sqrt{\frac{0.02}{3\times4}} = 0.041$$

表 6 不同施 N 量间 SSR 和 LSR 分析

表7不	同施 N	量下的	产量差异
-----	------	-----	------

K	2	3	4	5		施N量	产量(kg/10m²)	显著 0.05	水平 0.01
SR0.05	2.89	3.04	3.12	3.20	_	/E IT E		0.05	0.01
SR _{0.01}	3.89	4.06	4.16	4.22		\mathbf{B}_4 \mathbf{B}_3	9.567 9.542	a a	A A
SR _{0.05}	0.119	0.125	0.128	0.131		\mathbf{B}_5	9.000 7.783	b	В
SR _{0.01}	0.160	0.167	0.171	0.173		$egin{array}{c} \mathbf{B}_2 \\ \mathbf{B}_1 \end{array}$	7.433	c d	L D

查 DF=30(实际 DF=32)

从表 7 看出, B_3 和 B_4 间差异不显著,但 B_3 、 B_4 与 B_5 、 B_2 、 B_1 间差异显著。

2.2.3 栽培密度与施 N 量间的互作

Tt 除 $\mathbf{r}(\mathbf{r}=3)$ 即为各种密度下不同施 N 量的平均产量。

$$\mathbf{S}_{\mathbf{X}} = \sqrt{\frac{\mathbf{MSEb}}{\mathbf{r}}} = \sqrt{\frac{0.02}{3}} = 0.082$$

表 8 栽培密度与施 N 量间的 SSR 和 LSR 分析

K	2	3	4	5
SSR _{0.05}	2.89	3.04	3.12	3.20
$SSR_{0.01}$	3.89	4.06	4.16	4.22
LSR _{0.05}	0.24	0.25	0.25	0.26
LSR _{0.01}	0.32	0.33	0.34	0.35

DF = 32(查 DF = 30)

	\mathbf{A}_1				\mathbf{A}_2			\mathbf{A}_3			${f A}_4$		
项目 产	产量	显著性		显著性 产量 显著性 产量 显著性		起著性 产		产量 显著性					
		0.05	0.01		0.05	0.01		0.05	0.01		0.05	0.01	
B ₄	8.73	a	A	9.30	a	A	10.30	a	A	9.97	a	A	
\mathbf{B}_3	8.70	a	A	9.27	a	A	10.23	a	A	9.93	a	A	
\mathbf{B}_5	8.50	a	A	8.80	b	В	9.67	b	В	9.03	b	В	
\mathbf{B}_2	7.77	b	В	7.80	\mathbf{c}	С	7.87	\mathbf{c}	C	7.70	\mathbf{c}	C	
\mathbf{B}_1	7.47	c	С	7.47	d	D	7.50	d	C	7.30	d	D	

表 9 各种密度与各种施 N 量间产量显著性差异

注:产量单位为 $kg/10 \text{ m}^2$

当栽培密度为 A_2 、 A_3 ,施N量为 B_3 、 B_4 时产量最高,且与其它施N量产量差异显著,虽然在 A_4 条件下 B_3 、 B_4 的产量也很高,但已呈下降趋势。

2.3 相关分析

2.3.1 栽培密度与产量的相关分析

 $|_{t}|<_{t_{0.05}}$,故 p>0.05,即栽培密度与产量无相关或非直线相关。

当密度不十分大时,随着密度的增大,产量也随着增加,当密度增大到一定程度时,虽然产量也很高,但已呈下降趋势,若要再增大密度,产量不但不会增加,反而还会下降,呈抛物线状态。

2.3.2 施 N 量与产量的相关分析

计算得出
$$_{\mathbf{r}}$$
=0.7785, $_{\mathbf{Sr}}$ = $\sqrt{\frac{1-\mathbf{r}^2}{\mathbf{n}-2}}$ =0.362, $_{\mathbf{t}}$ = $\frac{\mathbf{r}-\mathbf{e}}{\mathbf{Sr}}$ = $\frac{0.7785}{0.362}$ =2.15

杳 t_{0.05.3}=3.182

 $|_{t}| <_{t_{0.05}}$,故 P>0.05,即施 N 量与产量无相关或非直线相关。

当施 N 量不十分大时,随着施 N 量的增加,产量也会增加,但增加到一定量时,虽产量也很高,但已呈下降趋势,若再增加施 N 量,产量不但不会增加,反而会下降,呈抛物线状态。

3 结 论

通过以上试验及分析可以得出:紧凑型玉米的适宜栽培密度为 5.5 万 \sim 6 万株/hm², 施 N 量为 $200\sim225$ kg/hm², 同时配合施磷、钾、锌肥,一般以 P₂O₅ $100\sim120$ kg/hm², K₂O $100\sim150$ kg/hm² 和 Zn 肥 $15\sim20$ kg/hm² 为宜。

参考 文献

- [1] 陈国平·紧凑型玉米的栽培[M]·北京:农业出版社,1995.
- [2] 山东农学院·作物栽培学[M]·北京:农业出版社,1980.