基于机器学习的地标大米掺假鉴别模型研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

F203;TS210.7

基金项目:

吉林省重点科技研发项目(20180201051NY)


Identification Model of Adulterated Landmark Rice Based on Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效鉴别国家地理标志大米(以下简称地标大米)中是否被掺入了普通大米,本研究以大米中矿物元素含量和近红外光谱中级融合数据为基础,建立SVM、Adaboost以及Adaboost-SVM三种机器学习鉴别模型。研究表明:三种模型均有优异的鉴别能力。SVM模型在小比例(2%~6%)鉴别时更优于其他两种模型,准确率达100%。Adaboost模型在最优融合数据集选择方面更有优势。三种模型鉴别的最低检出比可达2%,准确率分别为100%、100%及97.75%。数据融合技术结合机器学习方法可以作为大米掺假精确鉴别的可靠工具,为维护大米市场的健康有序发展提供技术支持。

    Abstract:

    In order to effectively identify whether the National Geographic Indication rice(hereinafter referred to as the landmark rice) is mixed with ordinary rice, three machine learning identification models including SVM, AdaBoost and AdaBoost-SVM were established based on the intermediate fusion data of mineral element content and near infrared spectrum. The result shows that all the three models have excellent discriminating ability. The SVM model is better than the other two models in small proportion(2%-6%) discrimination, and the accuracy of the 100%. Adaboost model is better than that of the other two models in the selection of optimal fusion data sets. The lowest detection rate of the three models can be up to 2%, and the accuracy of the three models is 100%, 100% and 97.75%, respectively. Data fusion technology combined with machine learning method can be used as a reliable tool for accurate identification of rice adulteration, and provide technical support for maintaining the healthy and orderly development of rice market.

    参考文献
    相似文献
    引证文献
引用本文

王靖会,秦润蒙,程娇娇,王艳辉,陈雷,王朝辉.基于机器学习的地标大米掺假鉴别模型研究[J].东北农业科学,2021,46(2):138-144.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-25
  • 出版日期:
文章二维码