基于判别局部保持投影的苹果叶部病害识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S661.1

基金项目:

河南省科技厅科技攻关项目(202102210157)


Apple Leaf Disease Recognition Based on Discriminant Local Preserving Projection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过维数约简实现特征提取是图像识别的一个重要步骤。由于同一种作物病害叶片和病斑图像的高度复杂性,在各种不同拍摄角度、位置和光照等条件下得到的图像之间差异较大,使得很多经典的维数约简和特征提取算法不能有效地用于作物叶部病害识别。本文在判别局部保持投影(Discriminant Locality Preserving Projections,DLPP)的基础上,提出一种基于DLPP的苹果叶部病害识别方法。首先利用GrabCut算法对采集的病害叶部图像进行背景分割,然后利用分水岭算法对去背景图像进行分割,得到病斑图像;再利用DLPP将病斑图像投影到低维判别空间,得到分类特征;最后利用K-最近邻分类器进行病害类别识别。在实际苹果病害叶片图像数据库上的实验结果表明,该方法是有效可行的。

    Abstract:

    Feature extraction via dimension reduction is an important step in image recognition. Due to the high complexity of the crop disease leaves and the corresponding lesion images, caused by various observed angle, locality and illumination in the real filed scene, many classical dimensional reduction and feature extraction algorithms are not effective to recognize the crop diseases. In this paper, based on discriminant locality preserving projections(DLPP), a crop leaf recognition method is proposed for crop diseased leaf identification. Firstly, GrabCut algorithm is used to segment the background of the collected leaf image, and then the watershed algorithm is employed to segment the image to obtain the lesion image. Next, DLPP is introduced to project the segmented lesion image into the low-dimensional discriminant space to get the classification features. Finally, K-nearest neighbor classifier is adopted to recognize the disease category. The experimental results on the image dataset of apple leaf diseases show that the method is effective and feasible.

    参考文献
    相似文献
    引证文献
引用本文

邵彧,张善文,李萍.基于判别局部保持投影的苹果叶部病害识别方法[J].东北农业科学,2021,46(4):113-118,134.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-02
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-26
  • 出版日期:
文章二维码