UPLC-MS/MS快速测定貉组织中4种硝基呋喃代谢物残留量的研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O657.63

基金项目:

秦皇岛市重点研发计划科技支撑项目(201703A038);河北省人才工程培养经费资助科研项目(A2017005053)


Study on Rapid Determination of Nitrofuran Metabolites in Racoon Dog Tissues by UPLC-MS/MS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解皮用貉子胴体中硝基呋喃类药物残留情况,建立貉组织中硝基呋喃代谢物残留量准确、快速测定的超高效液相-串联质谱法(UPLC-MS/MS),采用貉子肌肉样品,在酸性条件下,经60℃高温衍生1 h,调节pH值7~8后用乙酸乙酯提取,水浴浓缩后,经正己烷除脂净化,由超高效液相色谱-串联质谱仪在正离子模式下检测,内标法定量。结果表明:4种硝基呋喃代谢物在0.25~50μg/kg范围内线性良好,相关系数r>0.999。貉肌肉组织中4种硝基呋喃代谢物检出限(LOD)均为0.1μg/kg,定量限(LOQ)均为0.25μg/kg。在0.25~2μg/kg范围内的四个添加水平4种硝基呋喃代谢物的回收率为89.7%~108%,相对标准偏差为1.32%~10.5%(n=6)。说明该方法操作简单,灵敏度高、准确性好,适用于貉组织中硝基呋喃类代谢物残留的检测。

    Abstract:

    A method for rapid and accurate determination of nitrofuran metabolite residues in raccoon dog was developed using ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS). The samples of raccoon dog muscle were hydrolyzed derivatization at 60 ℃ for 1 h under acidic conditions, adjusting pH 7~8, and then concentrated in water bath, and purified with n-hexane. The samples were detected by UPLC-MS/MS in positive ion mode, and quantified by internal standard method. The limit of detection(LOD) was 0.1 μg/kg,and the limit of quantification(LOQ) was 0.25 μg/kg. The correlation coefficent was greater than 0.999(r>0.999) within 0.25~50.0μg/kg linear ranges.The recoveries of four nitrofuran metabolites at four levels in the range of 0.25~2 μg/kg were between 89.7%~108%, and the relative standard deviations(RSD) were between 1.32%~10.5%(n=6). The method is simple, sensitive and accurate. It is suitable for the determination of nitrofuran metabolic residues in raccoon dog tissue.

    参考文献
    相似文献
    引证文献
引用本文

李宏娟,曹秀梅,李曼,张嘉楠,闫玉杰,杜顺丰. UPLC-MS/MS快速测定貉组织中4种硝基呋喃代谢物残留量的研究[J].东北农业科学,2021,46(5):112-116.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-04-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-26
  • 出版日期:
文章二维码