应用数字图像技术进行大白菜氮素营养诊断的研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S634.1

基金项目:

吉林省现代农业产业技术体系项目(201806)


Study on Nitrogen Nutrition Diagnosis of Chinese Cabbage Using Digital Image Processing Technique
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以“锦抗1号”大白菜为试验材料,在六个氮肥水平下,分析拍摄角度对冠层图像数字化指标获取的影响,以及数字化指标与土壤无机氮含量、植株氮素营养指标的关系。结果表明,数字图像获取相机与大白菜冠层呈30°~60°角度拍摄最佳;在诸多数字化指标中,大白菜冠层图像绿光标准化值G/(R+G+B)与土壤无机氮含量、氮素营养指标的相关性最好,可作为大白菜氮素营养诊断的最佳数字化指标;建立莲座期G/(R+G+B)与施氮量、土壤无机氮含量、植株全氮含量、叶片全氮含量、叶柄硝酸盐浓度及SPAD值之间的线性方程模型。综上所述,数字图像技术可作为大白菜氮素营养诊断的方法,利用冠层图像G/(R+G+B)线性方程模型能够进行大白菜氮素营养的评估预测。

    Abstract:

    Taking ’Jinkang NO.1’ Chinese cabbage as experimental materials,the effects of shooting angle on digital indexes of canopy images and the relationships between digital indexes and soil inorganic nitrogen content,plant nitrogen nutrition indexes were was analyzed under six nitrogen levels.The results showed that the best angle between digital camera and Chinese cabbage canopy was 30°-60°.Among the digital indexes,the standardized green light G/(R+G+B) of Chinese cabbage canopy image had the best correlation with soil inorganic nitrogen content and nitrogen nutrition indexes,which could be used as the best digital index for the diagnosis of Nitrogen nutrition of Chinese cabbage.Linear equation model were established between G/(R+G+B) and soil inorganic nitrogen content,total N content in plant,total N content in leaf,nitrate concentration in petiole and SPAD.In conclusion,digital image processing technique can be used as a method of nitrogen nutrition diagnosis in Chinese cabbage,the G/(R+G+B) linear equation model of canopy image can be used to evaluate and predict the nitrogen nutrition of Chinese cabbage.

    参考文献
    相似文献
    引证文献
引用本文

李井会,朱丽丽,宋述尧.应用数字图像技术进行大白菜氮素营养诊断的研究[J].东北农业科学,2022,47(2):129-133.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-09
  • 出版日期:
文章二维码