基于CNN-RNN的小麦抗寒性分类模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

河南省科技计划项目(232102210079、212102210431、182102210048)


Classification of Cold Resistance of Wheat Based on CNN-RNN Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提升小麦抗寒性分类的准确度,进而为杂交组合选择提供参考。本研究以3 049个国审小麦品种文本为试验数据,采用卷积神经网络结合循环神经网络(CNN-RNN)的方法对小麦抗寒性分类进行预测。结果表明,该方法具有较好的表现,准确率可达73.28%,Kappa系数为0.595 6。为降低试验样本不均衡对本研究准确性的干扰,进而采用SMOTE技术,以实现样本均衡。过采样后,CNN-RNN的准确率和Kappa系数分别提升7.67%和0.02。说明上述方法组合能够有效提高小麦抗寒预测的准确性以及一致性检验系数,可应用于小麦抗寒分类预测,以达到缩短育种周期的目的。

    Abstract:

    To improve the accuracy of cold resistance classification of wheat, which further provide references for hybrid combination selection. The experimental data of 3 049 national wheat varieties were used in this study, and the cold resistance classification of wheat was predicted by using convolutional neural network combined with circulating neural network(CNN-RNN). The results showed that this method has state-of-the-art performances with an accuracy of 73.28% and a Kappa coefficient of 0.5956. Meanwhile, to reduce the interference of experimental sample imbalance in the accuracy of this study, SMOTE technology was used to achieve the sample balance. After oversampling, the accuracy and kappa coefficient of CNN-RNN were improved by 7.67% and 0.02, respectively. It indicated that the combination of the above methods could effectively improve the accuracy and consistency test coefficient of wheat cold-resistance prediction, which could be applied to wheat cold-resistance classification prediction,thereby shorten the traditional breeding cycle.

    参考文献
    相似文献
    引证文献
引用本文

来纯晓,李艳翠.基于CNN-RNN的小麦抗寒性分类模型[J].东北农业科学,2023,48(4):117-121.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-24
  • 出版日期:
文章二维码