基于高光谱反射率估测分蘖洋葱叶片净光合速率的研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S633.2

基金项目:

吉林省科技发展计划项目(20240601079RC);国家现代农业产业技术体系项目(CARS-24)


Research on Estimating the Net Photosynthetic Rate of Tillering Onion Leaves Based on Hyperspectral Reflectance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    分蘖洋葱的叶片为筒状叶,常规的光合作用测量仪无法使用其叶室夹取叶片,准确获取净光合速率。为解决这一问题,利用高光谱反射率结合机器学习算法来定量分析分蘖洋葱叶片的净光合速率。采用主成分分析(PCA)与随机森林(RF)模型分别和支持向量机(SVM)模型相结合,从高光谱数据中有效地提取了反映净光合速率的光谱特征,建立了高光谱反射率反演净光合速率的模型。主成分分析有效降低了数据维数,捕获了前9个主成分92.9%的方差,为机器学习模型提供了坚实的基础。在测试的模型中,随机森林模型表现出色,决定系数(R2)为0.94,均方根误差(RMSE)为1.515 4,预测精度和稳定性都很高。尽管支持向量机模型的R2为0.81,RMSE为1.63,但仍被证明能够处理数据中复杂的非线性关系,展示了其在预测建模任务中的鲁棒性和泛化能力。比较分析发现,随机森林模型更适合构建净光合速率的高光谱反射率反演模型。它能够通过集成策略减少预测错误,提供更稳定、更准确的估测。因此,本研究所采用的方法是解决分蘖洋葱筒状叶片净光合速率估测的有效手段。

    Abstract:

    The leaves of tillering onions are tubular, and conventional photosynthesis measurement instruments are unable to accurately gauge the net photosynthetic rate using their leaf chamber clamps. To address this issue, this paper utilizes hyperspectral reflectance combined with machine learning algorithms to quantitatively analyze the net photosynthetic rate in the leaves of tillering onions. Principal Component Analysis(PCA) was employed in conjunction with Random Forest(RF) and Support Vector Machine(SVM) models to effectively extract spectral features indicative of the net photosynthetic rate from hyperspectral data, establishing a model for the inversion of net photosynthetic rate based on hyperspectral reflectance. Principal Component Analysis effectively reduced the dimensionality of the data, capturing 92.9% of the variance within the first nine principal components, thereby providing a solid foundation for the machine learning models. In the tested models, the Random Forest model performed excellently,with a coefficient of determination(R2) of 0.94 and a root mean square error(RMSE) of 1.5154, demonstrating high prediction accuracy and stability. Although the Support Vector Machine model had a lower R2 of 0.81 and an RMSE of 1.63, it was still proven capable of handling complex nonlinear relationships in the data, showing robustness and generalization ability in predictive modeling tasks. Comparative analysis indicates that the Random Forest model is more suited for constructing models for the inversion of net photosynthetic rate using hyperspectral reflectance. This model reduces predictive errors through an ensemble strategy, providing more stable and accurate estimates. Therefore, the methodology employed in this study represents an effective approach for estimating the net photosynthetic rate in the tubular leaves of tillering onions.

    参考文献
    相似文献
    引证文献
引用本文

韩青妍,崔洪博,刘燕妮,王秀峰,张泽锦,王剑锋.基于高光谱反射率估测分蘖洋葱叶片净光合速率的研究[J].东北农业科学,2024,49(6):83-88.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-18
  • 出版日期:
文章二维码